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1,1-Difluoroallenes underwent £-selective addition with
alkylcopper reagents. The resulting 2,2-difluorovinylcopper
intermediates were captured by electrophiles or subjected to
palladium-catalyzed coupling to give 2,2-disubstituted 1,1-
difluoroalkenes in good yield.

1,1-Difluoroalkenes are useful as synthetic intermediates
and components of pharmaceuticals and agrochemicals. They
incorporate an electrophilic and polarized double bond as well as
vinylic fluorines with leaving group ability,1 which leads them
to react with nucleophiles rather than electrophiles at the vinylic
CF2 carbon to give monofluorinated alkenes (SNV reaction).2,3

The difluoroalkene moiety is also used for the development of
potential mechanism-based enzyme inhibitors4 and as a bio-
isostere for the carbonyl group, which leads to enhancement of
the biological activities of the original molecules.5 In spite of the
importance of difluoroalkenes, methods for their synthesis,
especially routes to 2,2-disubstituted 1,1-difluoroalkenes, are
still limited.6,7

Recently, we reported synthetic methods for the preparation
of 1,1-difluoroallenes, in which difluorovinylidenation of car-
bonyl groups were readily effected to provide easy access to
these allene derivatives arrayed with a variety of substituents.8

On the basis of these results, we planned a new route for the
synthesis of disubstituted 1,1-difluoroalkenes (Scheme 1). Nu-
cleophilic addition of an organometallic species (Nu­M) at the
£-position of 1,1-difluoroallenes would give 2,2-difluorovinyl-
metal intermediates. Capture of these intermediates by electro-
philes (E­X) would provide the desired 2,2-disubstituted 1,1-
difluoroalkenes bearing newly introduced substituents on the C2
(E) and C3 (Nu) positions. However, organometallic species
normally attack the ¡-position of difluoroallenes to give the SNV
products, monofluoroallenes,9 and no £-selective addition of a
carbanion equivalent to a 1,1-difluoroallene has been reported.10

In order to examine the possibility of the nucleophilic
addition at the £-position, a DFT calculation was performed on
1,1-difluoroallene (Figure 1). The results suggested that 1,1-
difluoroallene has a higher LUMO coefficient at the £-carbon
(0.693) than at the ¡-carbon (0.275), whereas a positive
electrostatic charge is localized at the ¡-carbon (+0.272), and
a negative charge is indicated at the £-carbon (¹0.341).11 The
desired £-attack, therefore, might be accessible under orbital-
controlled conditions.

Consequently, organometallic species were examined to
study their potential for inducing £-addition (Table 1). When
difluoroallene 1 was treated with methyllithium or ethylmagne-
sium bromide, complex mixtures were obtained (Entries 1 and
2). Diethylzinc caused an undesired ¡-attack to form mono-
fluoroallene 3a in 12% yield (SNV reaction, Entry 3). On the

other hand, ethylcopper, generated in situ from ethylmagnesium
bromide and the CuBr¢SMe2 complex, promoted the desired
£-addition to give difluoroalkene 2a in 67% yield (Entry 4).
However, a catalytic amount of CuBr¢SMe2 was not effective
(Entry 5). Further optimization revealed that the use of CuBr
and SMe2 with ethyl- or butylmagnesium bromide gave the
corresponding 3-alkyl-1,1-difluoroalkenes 2a and 2b in 95% and
93% yield, respectively (Entries 6 and 7). The £-addition step
probably generated difluorovinylcopper intermediates, and fol-
lowing a methanol quench, protonolysis gave the products 2.12

Next, the 2,2-difluorovinylcopper intermediate was captured
with electrophiles, which led to the corresponding functionalized
1,1-difluoroalkenes (Table 2). On treatment of the copper
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Scheme 1. Three-component coupling leading to 1,1-difluoro-
alkenes.
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Figure 1. LUMO coefficients and electrostatic charges of 1,1-
difluoroallene (B3LYP/6-31G*).

Table 1. £-Selective addition to 1,1-difluoroallenes

CF2
R

CF2

R
Nu

CF2

H

R
Nu

Nu–M

THF
–60 °C
1–3 h

RNu

F
+

1 2 3

M
H3O+

R = (CH2)2(1-Naph)

Entry Nu­M (equiv) 2/% 3/%

1 MeLi (2.8) ® ®

2a EtMgBr (2.8) ® ®

3a Et2Zn (1.7) ® 12, 3a
4 EtMgBr (1.7), CuBr¢SMe2 (2.0) 67, 2a 1, 3a
5a EtMgBr (1.0), CuBr¢SMe2 (0.1) ® 34, 3a
6 EtMgBr (1.7) 95, 2a 1, 3a

CuBr (1.7), SMe2 (1.7)
7 n-BuMgBr (1.7) 93, 2b trace

CuBr (1.7), SMe2 (1.7)
aDifluoroallene 1 was recovered in 45% (Entry 2), 70%
(Entry 3), and 53% yields (Entry 5), respectively.
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intermediate with NIS, NBS, or NCS, the corresponding 2-
halogenated 1,1-difluoroalkenes 2c­2e were obtained in 75%­
84% yield (Entries 1­3). These 2-halo-1,1-difluoroalkenes act as
efficient Suzuki coupling partners.7g Stannylation of the difluo-
rovinylcopper species proceeded to give 2-tributylstannyl- and
2-trimethylstannyl-1,1-difluoroalkenes 2f and 2g in 66% and
68% yield, respectively (Entries 4 and 5). The obtained
difluorovinylstannanes were then subjected to the Stille coupling
reaction (Scheme 2).7c,7e Treatment of the isolated stannane 2f
with iodobenzene in the presence of [Pd(PPh3)4] (10mol%) and
CuI (10mol%) afforded the corresponding ¢,¢-difluorostyrene
2h in 66% yield.

The above-mentioned £-selective addition was combined
with subsequent cross coupling in a one-pot operation to afford a
three-component coupling (Table 3).6,13­15 1,1-Difluoroallene 1
was first subjected to the £-selective addition of an ethylcopper
reagent. When the resulting vinylcopper intermediates reacted
with iodobenzene in the presence of [Pd2(dba)3]¢CHCl3
(10mol% Pd) and PPh3 (20mol%), the desired difluorostyrene
2h was obtained in 90% yield (Entry 1). A benzyl group was
introduced by the one-pot coupling sequence to afford 2i
(Entry 2). Cinnamyl bromide and crotyl bromide were also
advantageous, affording the corresponding 1,1-difluoroalka-1,4-
dienes 2j and 2k in 66% and 85% yield, respectively, where
allylation took place selectively at the ¡-carbon to the bromine
substituent (Entries 3 and 4).

In summary, we developed a method for £-selective
addition to 1,1-difluoroallenes using organocopper reagents.
The resulting difluorovinylcopper intermediates were captured
by a wide range of electrophiles to give functionalized 1,1-
difluoroalkenes that act as coupling partners. The £-addition
reaction was successfully followed by palladium-catalyzed cross

coupling to provide a three-component coupling sequence for
the synthesis of 2,2-disubstituted 1,1-difluoroalkenes.
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Number 23655028.
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Scheme 2. Stille coupling of 2,2-difluorovinylstannane 2f.
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