平成13年度修士論文

gem-ジフルオロビニルシランを鍵中間体とする gem-ジフルオロアルケンの合成

東京大学大学院理学系研究科化学専攻

奈良坂研究室

石橋 雄一郎

序論

本論

- 第1節 (1-トリフルオロメチルビニル)シランの調製 10
 - 1-1 緒言
 - 1-2 アルコール誘導体の脱離反応による調製
 - 1-3 シリルメタル種による調製
 - 1-4 1-トリフルオロメチル=シリル=ケトンのメチレン化による調製
 - 1-5 (1-トリフルオロメチルビニル)メタル種による調製
- 第2節 S_N2′反応による gem-ジフルオロビニルシランの合成 24
 - 2-1 緒言
 - 2-2 トリフェニル(1-トリフルオロメチルビニル)シランの S_N2'反応
 - 2-3 ジメチルフェニル(1-トリフルオロメチルビニル)シランの S_N2′反応
- 第3節 gem-ジフルオロビニルシランの求電子置換反応による gem-ジフル オロアルケンの合成
- 33

- 3-1 緒言
- 3-2 一置換 gem-ジフルオロアルケンの合成
- 3-3 ブロモ gem-ジフルオロアルケンの合成
- 3-4 二置換 gem-ジフルオロアルケンの合成
- 3-5 その他の変換反応:シリカートを経由するアルキル化とアシル化、 Friedel-Crafts型反応、クロスカップリング反応および玉尾酸化

総括47実験項49参考文献61謝辞63

フッ素原子は周期律表で希ガス族を除いて最も右上に位置し、他の原子に比べ際立った 特徴を持っている。その主なものとして

1) 元素中最大の電気陰性度

2) 水素原子に近いファンデルワールス半径

3) 大きな C-F 結合エネルギー

が挙げられる。これらの特徴によって、多くの含フッ素有機化合物は興味深い物理的およ び化学的性質を有し、そのため近年様々な分野で注目を集めている。

中でも特に含フッ素有機化合物が活用されているのは、材料科学と医農薬の二分野であ る。材料科学分野においては、分子中に多数のフッ素を導入したペルフルオロもしくはポ リフルオロ化合物がフッ素系高分子材料として用いられている。このようなフッ素化合物 は、一般に極めて高い熱的・化学的安定性を持ち、さらには撥水・撥油性という際立った 界面特性を有しているのが特徴である。一方、分子中の特定の位置のみをフッ素化した部 分フッ素化合物は、強い生理活性や特異な作用選択性を発現するものが多く見出され、医 農薬分野において重要な地位を占めている。

こうした含フッ素有機化合物は天然にほとんど存在しないため、その供給は有機合成化 学的手法に頼ることとなる。上述のフッ素系高分子化合物や部分フッ素化合物を合成する ために必要な合成素子を考えてみると、前者ではポリマー原料となるモノマーとして含フ ッ素ビニル化合物が必要であり、後者でも分子の特定の位置へフッ素を導入するには含フ

ッ素ビニル化合物が有効なビルディングブロックとなることに気付く。こうした観点から、ビニル末端部位に二つのフッ素原子を有する gem-ジフルオロアルケン1は、合成中間体として意義深い化合物群と言える。

ところが、gem-ジフルオロアルケン1のこれまで知られている合成法を見ると、多様な 置換基に対応できる自由度の高い手法は極めて少ない。従来法の多くがWittigタイプの反応であり、アルデヒド¹、ケトン¹、ラクトン²などのカルボニル化合物をgem-ジフルオロ

アルケン1へと変換するものである(式1、2)。

、 7 8 9 / 式1では、ジフルオロメチルホスホナート2から調製できるホスフィノイルジフルオロ メチルリチウム3と種々のカルボニル化合物との反応によって、対応する gem-ジフルオロ アルケン1を合成している。また式2では、ジブロモジフルオロメタンとへキサメチルリ ン酸トリアミン、亜鉛から調製されるリンイリド9を用いることで、反応性の低いカルボ

ニル化合物であるラクトンのジフルオロメチレン化を達成している。

しかしながら、これら Wittig タイプの方法を広範な gem-ジフルオロアルケン合成に適 用するには障害も多い。第一に、アルデヒドとの反応は比較的円滑に進行するが、ケトン との反応による二置換アルケン合成では多くの場合収率が低下し、一般性に乏しい。第二 に、望みのgem-ジフルオロアルケンを合成するためには、各々に対応するケトンの調製が 必要であり、多種類のgem-ジフルオロアルケンを合成したい場合には操作が煩雑となる。

従って、Wittig タイプの合成法に比べ一般性が高く、置換基を自由に選んで導入できる gem-ジフルオロアルケンの合成法が望まれる。こうした高い柔軟性を有する手法の一つと して、鍵中間体にgem-ジフルオロビニルメタル種を経由するジフルオロビニリデン基の導 入法が考えられる(Scheme 1)。

Scheme 1

Wittig タイプの合成法では、生成する gem-ジフルオロアルケンの置換基 R¹、R²はカル ボニル化合物に由来していたが、この方法では、二つの置換基 R¹、R²を順次外部から導入 できる。すなわち、まず一つ目の置換基 R¹を導入しながら gem-ジフルオロビニルメタル 種を調製し、次に求電子剤による gem-ジフルオロビニルメタル種の置換反応を行い、二つ 目の置換基の導入を行う。このため、置換基 R¹、R²を自由に組み合わせることができ、多 様な gem-ジフルオロアルケンを単一の原料から合成することが可能となる。

こうした *gem*-ジフルオロビニルメタル種を経由する合成法は、その有用性にもかかわら ずこれまであまり知られていない。その原因は、次の二つの問題点にあると思われる。

1) gem-ジフルオロビニル位への置換基 R¹の導入が困難なこと

2) 中間体の gem-ジフルオロビニルメタル種 10 が β 脱離し易いこと(式 3)

$$F \xrightarrow{R^1} F \xrightarrow{R^1} F \xrightarrow{R^1} R^1$$
(3)

β脱離によるフルオロアセチレン 11 への分解は、R¹を電子求引基とすることによりある程度抑えられる。そのため、gem-ジフルオロビニルメタル種 10 の例はいくつか報告されているものの、R¹は電子求引基に限定され。電子供与基や水素原子である 10 はほとんど見られない(Fig. 1)⁴。このように上記 1)、2)の問題点を同時に解決することが困難なため、Scheme 1 のような一般性の高い gem-ジフルオロアルケンの合成法は知られていなかった。

コメント: (3) K. Tanaka, T. Nakai, N. Ishikawa, *Tetrahedron Lett.* **1978**, 4809,

naohisa.iimbo

P. J. Crowley, J. A. Howarth, W. M.

Owton, J. M. Percy, K. Stansfield,

 $Tetrahedron\ lett.\ {f 37},\ 5975\ (1993)$

コメント: ページ:3

(4) B. V. Nguyen, D. J. Burton, J. Org.

Chem., 62, 7758 (1997)

こうした背景から当研究室では、熱的に安定な gem-ジフルオロビニルメタル種を鍵中間 体に用いる以下の gem-ジフルオロアルケン合成法を開発している(式 4)。すなわち、安価

で安定な 2,2,2・トリフルオロエチルトシラート **12** から出発して、ホウ素アート錯体の1,2-転位を利用することで置換基 R¹を導入し、熱的に安定な *gem*-ジフルオロビニルボラン **13** を調製している。これに種々の求電子剤を作用させることにより、対応する *gem*-ジフルオ ロアルケンを合成できる 。この手法は、ホウ素の特性を利用することで前述の二つの問題 点を解決し、広範な二置換 *gem*-ジフルオロアルケンの合成を可能にしている。

また、gem-ジフルオロビニルボラン経由の合成法を補うものとして、当研究室ではgem-ジフルオロビニルジルコニウム **17** を経由する方法も報告している(式 5)。ここでは、2,2-

ジフルオロビニルトシラート 16 に低原子価ジルコノセンを作用させることで、gem・ジフ ルオロビニルジルコニウム 17 を調製し、求電子剤とのカップリング反応を行っている。こ れにより、前述したボラン経由の合成法が適用困難な、sp²あるいは sp 炭素置換基を有す る一置換 gem・ジフルオロアルケン 18 を合成することができる ⁶。 上記二種類の gem・ジフルオロアルケン合成法は、どちらも金属の種類を選ぶことによっ naohisa.jimbo
 ⇒ ント: (5) J. Ichikawa, C. Ikeura, T.
 Minami, J. Fluroine Chem., 63, 281
 (1993), J. Ichikawa, S. Hamada, T.
 sonoda, H. Kobayashi, Tetrahedron Lett.,
 33, 337 (1992), J. Ichikawa, T. Sonoda, H.
 Kobayashi, Tetrahedron Lett., 30, 6379
 (1989)

naohisa.jimbo コメント: (6) J. Ichikawa, M. Fujiwara, T. Okauchi, T. Minami, *Tetrahedron* Lett., **37**, 8799 (1996)

てβ脱離を防ぎ、これまで困難であった電子供与基を含む多様な gem-ジフルオロアルケン の合成を可能にした。また、二つの置換基の導入を one-pot で行えることも大きな特徴の 一つである。

ただし、これらの合成法にも問題点はある。gem-ジフルオロビニルボラン経由の方法で は、置換基 R¹の導入のためにボラン BR¹3の調製が必要であり、ホウ素上の三つの置換基 のうち一つしか目的化合物の合成に利用できない。また、gem-ジフルオロジルコニウム経 由の合成法では、高価なジルコニウム錯体を化学量論量用いる必要がある。さらに、gem-ジフルオロビニルボラン 13 やジルコニウム 17 はともに空気中では不安定で、長期保存は 難しい。従って、1)、2)の問題点に加えてこれらの欠点を克服し、かつ長期保存が可能な gem-ジフルオロビニルメタル種を開発することができれば、gem-ジフルオロアルケンの極 めて有用な合成法になると期待できる。

問題点 2)のβ脱離は、炭素-金属結合のイオン結合性が高く、容易にフッ化物イオンの 脱離を引き起こすことが原因である。したがって、目標とする新規 gem-ジフルオロアルケ ンの合成法を開発する上で、共有結合性の大きな炭素-金属結合を持つメタル種を創製す る必要がある。実際、β脱離を防ぎ、熱的に安定な gem-ジフルオロビニルボランやジルコ ニウムでは、炭素-金属結合の共有結合性が大きい。そこで、炭素-金属結合が共有結合 性を有し空気中で熱的にも安定であり、しかも適当な条件下で十

分な反応性を示すジフルオロビニルメタル種として、筆者はgem-ジフルオロビニルシラン 19 に着目した。ケイ素の電気陰性度は

1.7 と金属原子の中では大きく (Fig. 2)、炭素-ケイ素結合が共

有結合性を持つため、有機ケイ素化合物は空気中で扱うことができ、熱的にも安定なもの が多い。また、炭素-ケイ素結合の切断を伴う反応については現在までに多くの反応が開 発されており、これを利用して新たな置換基の導入が見込める。

 $\mathbf{5}$

gem-ジフルオロビニルシラン 19 については、これまでに単離した例は知られておらず、 熱的安定性などの物性についての知見も全く得られていなかった。そこでまず、gem・ジフ ルオロビニルシランの安定性を調べるとともに、その調製法を開発する必要があった。一 般性の高いgem-ジフルオロアルケンの合成法を開発するためには、問題点1)で指摘したよ うに、様々な置換基 R¹の導入を行いながら簡便に 19 を調製することが極めて重要となる (Scheme $2)_{\circ}$

Scheme 2

OEt 23

ところで、3,3,3・トリフルオロプロペン誘導体20に求核剤を作用させると、二重結合の 転位を伴ってフッ化物イオンが脱離する S_N2 反応が進行し、gem-ジフルオロアルケンを与 えることが知られる(式 6)7。この方法は、原料となる 3,3,3・トリフルオロプロペン誘導体 20 が市販のトリフルオロ酢酸エステル 23 から調製できるという利点を持つ(式 7)。

ー般性に乏しい。例えば、電子求引基であるフェニル基を2位に有する20aはフェニルリ チウムとの反応が円滑に進行するものの、アルキル基を有する20bは全く反応しない(式 8)。また、反応性の高い20aを用いた場合でさえ、エステルエノラートのような求核性の 低い反応剤になるとS_N2′反応は進行しない(式9)。こうした基質、求核剤の制約が原因と なって、20のS_N2′反応を用いたgem-ジフルオロアルケンの合成法は、報告例が数例ある

ものの汎用性の高い方法にはなり得ていない7。

ここで、20の置換基 R をシリル基とすれば、SN2′反応によって gem-ジフルオロビニル シランが得られることになる。しかも、ケイ素の持つα-アニオン安定化効果によって中間 体のカルボアニオン 28 が生成し易くなり、律速段階である付加反応が加速されることによ って、結果的に SN2′反応が促進される。つまり、広範な求核剤の利用が可能となるため多 種類のビニルシランを調製することができ、上述の問題点 1)を解決できることになる。さ らに、ビニルシランの反応性を利用してシリル基を種々の求電子剤で置換することができ れば、二つの置換基の組み合わせを自由に選ぶことができ、従来の方法に比べて多様な二 置換 gem-ジフルオロアルケンを合成できるものと期待した(Scheme 3)。

これらの点を踏まえ、筆者は修士課程において、新規*gem*-ジフルオロビニルメタル種で ある *gem*-ジフルオロビニルシラン 29 を鍵中間体として用いる汎用性の高い*gem*-ジフルオ ロアルケン合成法の開発を目指した。すなわち、まず(1-トリフルオロメチルビニル)シラン

_
'/

ohiea	umbo
unsa.	

$\exists \mathbf{y} \mathbf{y} \mathbf{F} \cdot (7a) \mathbf{R} = Ph, Alkyl J. P.$
Begue, D. B. Delpon, M. H. Rock
$Tetrahedron \ Lett., {\bf 36}, 5003 \ (1995) \ (7b) \ R$
= CO2Na, T. Fuchikami, Y. SHIbata, Y.
Suzuki, Tetrahedron Lett., 27, 3173
(1986) (7c) R = F, H. M. Park, T. Uegami,
T. Konno, T. Ishihara, H. Yamanaka,
<i>Tetrahedron Lett.</i> 40 , 2985 (1999) (7d) R
= H, D. A. Kendrick, M. Kolb, J. Fluorine
Chem 45 265 (1989)

27 と種々の求核剤との S_N2'反応を行い、鍵中間体である gem-ジフルオロビニルシラン 29 を調製する (Step 1)。さらに、得られた 29 のシリル基を求電子剤で置換することにより (Step 2)、広範なgem-ジフルオロアルケン 30 に適応できる合成法を開発することとした。

上式の反応を円滑に進行させるには、ケイ素上の置換基の選択が重要となる。そこで各 種ビニルシラン 27 を選び、(i)シリルケトン 31 のメチレン化(式10)および(ii)(1-ト リフルオロメチルビニル)マグネシウムのシリル化(式11)の二種類の手法によって調製し た。この結果について、本論第1節で述べる。

上記二つの方法で調製した(1・トリフルオロメチルビニル)シラン 27 に種々の求核剤を作用させ、S_N2'反応における一般性を調べた。その結果、27 は期待通り広範な求核剤と円滑に反応し、20a 等のこれまで知られていた 3,3,3・トリフルオロプロペン誘導体に比べ、反応性に優れていることが明らかになった(式 12)。この結果について第2節で述べる。

次に、SN2′反応によって得られた gem-ジフルオロビニルシラン 33 の gem-ジフルオロア ルケンへの変換反応を検討した。フッ化物イオンやアルコキシドイオンを作用させると、 33はgem-ジフルオロビニルアニオン等価体として水やアルデヒド等の求電子剤と反応し、 対応する一置換 gem-ジフルオロアルケン 34、gem-ジフルオロアリルアルコール 35 が合 成できることを見出した。また、これらの反応を SN2′反応と組み合わせ連続的に行うこと により、出発物質の(1-トリフルオロメチルビニル)シラン 27b から one-pot で 34、35 を合

成することに成功した。さらに、電子不足であるジフルオロアルケンへの求電子付加反応 は通常困難とされるが、ケイ素原子の持つβ-カチオン安定化効果によって gem-ジフルオ ロビニルシランの臭素化も円滑に進行し、引き続く脱ブロモシランによって 33 から gem-ジフルオロビニルブロミド 37 への変換が収率よく進行することも明らかにした(式 13)。こ れらシリル置換基の求電子置換反応について第3節で述べる。

第1節 (1・トリフルオロメチルビニル)シランの調製

1-1 緒言

序論でも述べたように筆者は、広範な置換基に適用できる二置換 gem-ジフルオロアルケンの合成法を実現するため、シリル基の有する特性を活用した二段階の反応(Step 1, Step 2)からなる合成スキームを計画した(Scheme 4)。すなわち、Step 1(27→29)の S_N2'反応では、シリル基の持つα-アニオン安定化効果により中間体 28 の安定性を高め、律速段階と考えられる求核剤の付加 28→29)を促進することで、置換基(Nu)を導入しながら gem-ジフルオロビニルシラン 29 を効率良く調製する。続く Step 2(29→30)では、炭素-ケイ素結合を利用することによって、もう一つの置換基(E)を導入し、二置換 gem-ジフルオロアルケン 30 を合成する。従って、本ジフルオロアルケン合成法では、二種類の置換基(Nu、E)を異なる極性で導入することが可能となる。

上述した各反応の反応性は、シリル基の立体的、電子的性質を決定するケイ素上の置換 基に大きく左右されるため、その選択が極めて重要となる。以下に、Scheme 1の反応を円 滑に進行させるために、シリル基が満たすべき条件を述べる。

まず、出発物質となる(1-トリフルオロメチルビニル)シラン 27 を取り扱い易いものとす るため、その安定性を確保する必要がある。一般に(1-トリフルオロメチルビニル)メタル種 38 は不安定であり、β脱離を起こして分解する(式 14)。例えば、(1-トリフルオロメチルビ ニル)リチウム 40 はエーテル中-100 ℃で調製できるが、このような極低温でも 30 分程 度の短時間でジフルオロアレン 39 へと分解してしまう(式 15)⁸。

同様に、(1・トリフルオロメチルビニル)シラン 27 も不安定であることが予想され、実際 単離された例は気相反応による 27a のみである(式 16)⁹。また直接の証拠は無いものの、エ ーテル中でトリエチル(1・トリフルオロメチルビニル)シラン 27b がβ脱離を起こし、トリ エチルシリルフルオリド 42 が生成するとの報告がある(式 17)⁸。

こうした 27 からの β 脱離は、ケイ素への求核剤の攻撃が引き金になって進行すると考えられる。従って 27 の安定性を高めるためには、ケイ素上の置換基を嵩高くして求核剤の攻撃を抑制することが有効である。

次に、本合成スキームの第一段階(Step 1: S_N2′反応)では、シリル基の電子的性質が重要 となる。ケイ素上に電子求引基を導入することよってアニオン 28 を安定化すれば、律速段 階である 27→28 を促進することになり、円滑な S_N2′反応が期待できる。実際、フッ素を 含まないビニルシラン 43 の S_N2′反応においてシリル基上の置換基効果が調べられており、 トリフェニルビニルシラン 43c はトリメチルビニルシラン 43a に比べ反応性の高いことが 分かっている(式 18)¹⁰。

コメント: (10) N. Kishi, H. Imma, K. Mikami, T. Nakai, *Synlett*, **1992**, 189.

また、求核剤は27のビニル末端だけでなくケイ素を攻撃する可能性もある(式19)。そこで、目的とするS_N2′反応を進行させるには、求核剤のケイ素への攻撃を立体的に防ぐ必要がある。

合成スキームの第二段階(Step 2)では、ここまでの炭素-ケイ素結合を保持するための議 論とは逆に、積極的に炭素-ケイ素結合を切断して他の結合へ変換することが求められる。 ビニルシランの炭素-ケイ素結合を利用した変換については、これまでに数多くの研究が なされその応用例は多岐に渡るが(式 20~23)^{10,11,12,13,14}、大きく次の二種類に分けられる。 すなわち、求電子剤であるプロトンやハロゲン、カルボカチオンのアルケン部への攻撃に よって開始する反応(式 20、21)と、求核剤であるフッ化物イオンや過酸化物イオンによる シリカートの形成で開始する反応(式 22、23)がある。従って、前者では電子豊富なシリル 基を、後者では逆に電子不足なシリル基を選択することにより、それぞれ反応が促進され ると考えられる。また、いずれの形式の反応でも総じて、立体的には嵩の小さいシリル基 のほうが反応性は高いことが知られる。

Protonation or Halogenation -
Desilylation
$$\begin{array}{c}
R^{1} \\
R^{2} \\
R^{2} \\
R^{4} \\
R^$$

上で述べたシリル基の効果を考慮に入れ、以下の1.から3.に示した置換基をケイ素上 に有する **27** を調製して各段階の反応を検討することにした。

1. フェニル基:基質を安定化する嵩高さと、SN2′反応を促進する電子求引性を併せ持つ

2. アルコキシ基:シリルクロリドの加水分解により容易に導入でき、電子求引性が強い

3. アルキル基:多様な置換基があり、反応性の微調整が可能

そこで、多様な置換基を有する 27 の調製法として次の四つの方法を試みた(Scheme 5)。 すなわち、

(1) アルコール誘導体 49 の脱離反応、

(2) 2-ブロモ-3,3,3-トリフルオロ-1-プロペン32とシリルメタル種の反応

(3) トリフルオロメチル=シリル=ケトン31のメチレン化

(4) (1・トリフルオロメチルビニル)メタル種38とシリルハライドの反応

その結果、(3)、(4)の方法を用いて(1-トリフルオロメチルビニル)シラン 27 の調製に成功した。

1-2 アルコール誘導体の脱離反応による 27 の調製

トリフルオロメチル基とシリル基を有するアルコール誘導体 49 は、脱離反応によって 27 に変換可能と考え、まず 49 の調製法を検討することにした。49 は、既知化合物である トリフルオロアセトン 50 やトリフルオロメチル=シリル=ケトン 31^{15,16}に、それぞれシリ ルリチウムやメチルリチウム等を作用させ、生じるヒドロキシ基を保護することで調製で きると考えた(式 24、25)。但し、すでに Xu らによって、31 にアルキルリチウムを作用さ せると Brook 転位により 2,2・ジフルオロビニルシリルエーテル 53 が得られるという報告 がなされている(式 26)¹⁶。従って、Brook 転移を抑えるために、この反応は低温で行う必 要がある。

そこで、Brook 転位が進行する前にアニオン中間体 51 を捕捉するため、トリフルオロア セトン 50 にトリフェニルシリルリチウムを作用させた後、低温でトシルクロリドを加えた。 しかし、54 の Brook 転移は-78 °C でも抑えられず、ジフルオロビニル=シリル=エーテル 57 が低収率で得られるのみであった(式 27)。この結果から、この手法による 27 の調製は 困難であると判断した。

1-3 シリルメタル種による 27 の調製

ビニルハライドにクプラートを作用させると、対応するアルケンが合成できる。そこで、 市販されている 2・ブロモ・3,3,3・トリフルオロ・1・プロペン 32 にジシリルクプラートを反応 させ、目的とする27 を調製することとした。ジシリルクプラートとしては、文献既知であ るビス(トリフェニルシリル)クプラート¹⁷、ビス(ジメチルフェニルシリル)クプラート¹⁸ を用いて検討を行った(式 28、29)。

ビス(トリフェニルシリル)クプラート 58 を 32 に作用させたところ、トリフェニルシリル 基が二つ導入された gem-ジフルオロビニルシラン 59 が高収率で得られた(式 28)。これは、 系中で望みの 27c が生成しているものの、クプラートに対し 32 より 27c の反応性が高い ために過剰反応が進行し、59 が得られたと考えられる。一方、ビス(ジメチルフェニルシ リル)クプラート 60 を 32 に作用させた場合は、目的とする 27d が全く得られず、過剰反 応の進行したジシリル体 61 も低収率であった(式 29)。

以上のように、ジシリルクプラートは 2-ブロモ-3,3,3-トリフルオロ-1-プロペン 32 と反応するものの、目的化合物 27 と過剰反応を起こすため、この手法も 32 の合成法としては 適切でないことが分かった。

1-4 トリフルオロメチル=シリル=ケトンのメチレン化による 27 の合成 前項で述べたように、シリルクプラートを直接 2・ブロモ・3,3,3・トリフルオロ・1・プロペン
32 に作用させると過剰反応が進行するが(式 28、29)、トリフルオロ酢酸無水物との反応で は対応するトリフルオロメチル=シリル=ケトン 31 を与える(式 30)^{16,17}。そこで、このト リフルオロメチル=シリル=ケトン 31 のメチレン化による 27 の合成法を検討した。

まず、文献の方法に従ってジメチルフェニルシリル基やトリフェニルシリル基を有する

31の調製を試みた(式 31)。その結果、トリフルオロ酢酸無水物にビス(トリフェニルシリル) クプラート 58 を作用させることによって、トリフェニルシリルケトン 31c を調製できた。この 31c を用いてメチレン化の検討を行った結果を Table 1 にまとめる。

Table 1

	F ₃ C	itions	5 ₃ C−∕∕ SiPh₃		
	31c		27c		
Entry	Reagents (eq)	Solv.	Temp.	Time / h	27c /%
1	CH ₂ =PPh ₃ (1.0)	THF	0 °C	0.2	0
2	KCH ₂ P(O) (OEt) ₂ (1.0)	DMF	80 °C	2	0
3	Cp ₂ ZrCl ₂ (1.1), CH ₂ I ₂ (1.5), Zn (4.5)	THF	reflux	1	15
4	Cp ₂ ZrCl ₂ (2.1), CH ₂ l ₂ (3.1), Zn (5.2)	THF	rt	6	30
5	Cp ₂ ZrCl ₂ (2.0), CH ₂ l ₂ (3.0), Zn (5.0)	THF	rt → 30 °C	4	45
6	Cp ₂ TiMe ₂ (2.0)	toluene	rt → 80 °C	2	0
7	$Cp_2Ti \subset AIMe_2$ (1.5)	THF	0 °C	0.3	trace
8	TiCl ₄ (1.1), CH ₂ l ₂ (1.5), Zn (4.5)	THF	$0 \ ^{\circ}C \rightarrow rt$	0.2	0
9	TiCl ₄ (3.0), CH ₂ Br ₂ (4.0), Zn (5.0)	THF	rt → 45 °C	0.5	trace
10	Ti(O ⁱ Pr) ₄ (1.1), CH ₂ Br ₂ (1.5), Zn (4.5)	THF	reflux	10	< 10
11	Ti(O [′] Pr)₄ (1.1), CH₂l₂ (1.5), Zn (4.5)	THF	rt → reflux	3	51

初めに Wittig タイプのメチレン化を試みたが、目的とするビニルシラン27c は全く生成 せず、31c が分解するのみであった(Entries 1, 2)。そこで、他の方法としてジルコノセン ジクロリドとジハロメタンから系中で発生させたカルベン錯体により 31c のメチレン化を 試みたところ、最高 45%の収率で 27c が得られた(Entries 3 ~ 5)¹⁹。しかし、ジルコノセ ンジクロリドは高価であり収率も満足のいくものではなかったので、同様のカルベン錯体

の反応をチタン化合物を用いて検討した(Entries 6~11)。その結果、ジメチルチタノセン や Tebbe 試薬は反応性が高すぎ、基質 31c が分解してしまったが、金属亜鉛存在下、テト ラキスイソプロポキシチタンとジョードメタンから調製されるカルベン錯体が 31c のメチ レン化に適していることが分かった²⁰。このように、シリルケトン 31c のメチレン化によ り、トリフェニルビニルシラン 27c を 51%の収率で得ることができた。

1-5 (1-トリフルオロメチルビニル)メタル種による 27 の調製

上記シリルケトンのメチレン化を利用する手法では、対応するケトンの合成に問題が残 り、トリフェニルビニルシラン 27c のみ調製可能であった。そこで、フェニル基に加えア ルキル基やアルコキシ基、ヒドロキシ基など多様な置換基を有する27 を調製するため、ビ ニルメタル種のシリル化による 27 の調製を試みた。

ビニルリチウムなどのビニルメタル種とシリルハライドとの反応は、ビニルシランの調 製法としてよく知られている。但し、(1・トリフルオロメチルビニル)メタル種 38 は一般に 不安定である(式 32)。そこで、

1) 低温で反応を行う

2) β脱離を起こしにくい比較的安定なメタル種を用いる

3) シリルハライド共存下でメタル種を調製する

という三つの手法を用いて検討を行った。

最初に、最も反応性の高い(1-トリフルオロメチルビニル)メタル種と考えられる(1-トリフルオロメチルビニル)リチウム 40 を低温で調製し、昇温せず直ちにシリルクロリドやシリルトリフラートを加えた(式 33)⁸。しかし、種々のシリルクロリドや *tert*-ブチルジメチルシリルトリフラートを反応させてみたものの、対応するビニルシランは全く得られなかった。40 が存在できる-100 ℃以下の低温ではシリルクロリドやシリルトリフラートの反

応性が十分でなかったと考えられる。

そこで、室温以上でも分解しない (1-トリフルオロメチルビニル)メタル種 38 を用い、 加熱条件下で反応を行うことにより、27 の調製を試みた。*N,N,N',N'*テトラメチルエチレ ンジアミン(TMEDA)存在下、THF 中で 32 に亜鉛を作用させると、(1-トリフルオロメチ ルビニル)亜鉛 63 が生成することが知られている²¹。63 は THF 中加熱還流条件下でも安 定であることが報告されているので、同条件で *tert*-ブチルジメチルシリルトリフラートと 反応させた。しかし、この場合も 27e は全く得られなかった(式 34)。63 は安定である分、 反応性も低いため反応が起こらなかったと考えられる。

最近になって、系中で発生させだ1・トリフルオロメチル)ビニルマグネシウムブロミド 64 とボロン酸エステルとを反応させることにより、対応するビニルボロン酸 65 を合成し た例が報告された(式 35)²²。64 は THF 中 0 ℃ 以上でマグネシウムと 32 を反応させるこ とで調製できるが、不安定なため短時間の保存もできない。ここでは、生成する 64 があら かじめ系中に存在するボロン酸エステルとすぐに反応するため、65 が高収率で得られてい る。そこで、この反応を 27 の合成に応用することとした。すなわち、シリルクロリドがマ グネシウムと反応せず、かつ 64 との十分な反応性を有するならば、ボロン酸エステルの代 わりにシリルクロリドを加えても同様な反応が進行し、対応するビニルシランを与えると 予想した。

32 とマグネシウムから調製されるビニルマグネシウムブロミド 64 と種々のシリルクロ リドの反応を行ったところ、期待通り対応する(1-トリフルオロメチルビニル)シラン 27 が 生成した(Table 2)。

F ₃ C	$ \begin{array}{c} \text{Mg (1.)}\\ \text{R}_{4-n}\text{SiCl}_n (2.)\\ \text{Br} & 0 ^\circ\text{C} \rightarrow \text{rt},\\ & & & & & & & \\ \end{array} $	2 eq) 0 ~ 3.0 eq) 3 ~ 12 h F3C F3C SiR':	3 ⁺ F ₂ C	
	32	27		66
Entry	R _n SiCl _{4-n}	SiR′₃	27 (%) ^a	66 (%) ^a
1	Me ₃ SiCl	SiMe ₃ (27a)	25	0
2	ⁱ Pr₃SiCl	Si [′] Pr₃(27f)	< 5	0
3	Me ₂ (ⁿ C ₁₈ H ₃₇)SiCI	SiMe ₂ (ⁿ C ₁₈ H ₃₇) (27g)	4	0
4	Me ₂ PhSiCl	SiMe ₂ Ph(27d)	70	~2
5	Ph ₂ MeSiCl	SiPh ₂ Me(27h)	39	3
6	Ph ₃ SiCl	SiPh ₃ (27c)	N.	R.
7	MePhSiCl ₂	SiMePhOH(27i)	39	~5
8	MeSiCl ₃	SiMe(OH) ₂ (27j)	C.	M.
9	SiCl ₄	Si(OH) ₃ (27k)	N.	R.
	N.R. : No Reaction	C.M. : Complex Mixture	a : ¹⁹ F N	MR Yield

まず、トリアルキルビニルシランの調製を試み、(1-トリフルオロメチルビニル)マグネシ ウムブロミド 64 とトリメチルシリルクロリドの反応を行ったところ、27a が NMR 収率で 25%生成した(Entry 1)。27a はシリル基上が立体的に小さくβ脱離が最も進行し易いと思 われるが、β脱離によって生成すると予想されるトリメチルシリルフルオリド 67a は少量 確認されたのみであった。反応時間を長くしても 27a と 67a の存在比が変わらなかったこ とから、67a は 27a からのβ脱離によって生成したものではなく、系中に存在するマグネ シウムフルオリドとトリメチルシリルクロリドとのハロゲン交換に由来していると思われ

\Im (Scheme 6).

Scheme 6

27a の収率がビニルボロン酸合成の場合(式 35)に比べて低いのは、トリメチルシリルク ロリドの反応性が十分でなく、64 からのβ脱離が先に起こってしまったためと考えられる。 低収率ではあるが望みの化合物である 27a が得られ、しかも 27a の炭素-ケイ素結合は予 想に反し室温でも安定であり、β脱離による分解はほとんど起こらないことが分かった。 但し、27a は低沸点で単離精製が困難なため、高沸点で取り扱いの容易な 27 を調製する目 的で他のシリルクロリドとの反応を検討した。

嵩高いシリルクロリドであるトリイソプロピルシリルクロリドを用いると、収率が低下 した(Entry 2)。これはビニルマグネシウムブロミド 64 のケイ素原子への攻撃が立体的に 阻害されたためと考えられる。トリイソプロピルシリルクロリドに比べ立体的に小さいと 思われるジメチルオクタデシルシリルクロリドを用いた場合も、27g はわずかに生成する のみであった(Entry 3)。以上のように、トリアルキルシリルクロリドの 64 に対する反応 性は、立体障害の最も小さいトリメチルシリルクロリドでさえ十分ではないことが分かっ た。

そこで次に、電子求引性のフェニル基をケイ素上に持つシリルクロリドを用いた。ジメ チルフェニルシリルクロリドと 64 の反応は円滑に進行し、対応するビニルシラン 27d を 70%で得ることができた(Entry 4)。このとき、生成した 27d がさらに 64 と反応した S_N2' 生成物 66d がわずかに得られた(式 36)。収率がトリアルキルシリルクロリドに比べ向上し

たのは、電子求引性のフェニル基を導入したことによる電子的効果が立体障害の増大を上回り、64の攻撃が加速されたためと考えられる。しかし、フェニル基をさらに導入したジフェニルメチルシリルクロリド、トリフェニルシリルクロリドはかえって反応性が低下した(Entries 5, 6)。フェニル基が複数あると、立体障害が電子的因子に勝るためであろう。

さらに、ケイ素上にヒドロキシ基を有する基質 27i-k の調製を検討した。これらの基質 は、64 と R₂SiCl₂ あるいは RSiCl₃の反応を行い、反応終了後に残る Si-Cl 結合を加水分 解することで得られる。ヒドロキシ基を一つ有する 27i は調製できたが(Entry 7)、二つの ヒドロキシ基を持つ 27j は得られず、系が複雑になった(Entry 8)。おそらく生成したジヒ ドロキシビニルシランが重合し、ポリシロキサンを形成したためであろう。テトラクロロ シランは反応性が低く、対応する 27k は全く得られなかった(Entry 9)。

また、ケイ素上にアルコキシ基を有する 271 を調製するため、水の代わりにエタノール を用いて反応を停止した(式 37)。しかし、¹⁹F NMR により 271 と思われるピーク(100.6 ppm(1F, s))を確認したものの、 精製時のシリカゲル上で容易に加水分解して 27i になっ てしまい、現在のところ単離に至っていない。271 は電子求引基であるアルコキシ基を有す るため S_N2′反応やシリケート形成を促進すると期待でき、今後単離法の検討を行う必要が ある。

以上述べたように、系中で調製したビニルマグネシウムブロミドにシリルクロリドを作 用させる方法により、多様な置換基を有する1-トリフルオロメチルビニル)シラン 27a、27c、 27d、27h、27iを合成することに成功した。27 は、過去の報告から予想された熱的な不安 定性を示さず、ケイ素上の置換基にかかわらずβ脱離を起こさないことが明らかになった。 例えばジメチルフェニル(1-トリフルオロメチルビニル)シラン 27d は、室温で1ヶ月以上 経過後も分解は全く見られない。

第1節の結果をまとめると次のようになる。 トリフルオロメチル=シリル=ケトン 31 の メチレン化、および(1-トリフルオロメチルビニル)マグネシウムブロミド 64 とシリルハラ イドの反応の二つの方法により、本反応の出発物質となる(1-トリフルオロメチルビニル) シラン 27 を調製することができた。次節では、得られた 27 の S_N2′反応について述べる。

第2節 S_N2'反応による gem-ジフルオロビニルシランの合成

2-1 緒言

序論で述べたように、3,3,3・トリフルオロ-1・プロペン誘導体 **68** と求核剤の S_N2' 反応は、 *gem*-ジフルオロアルケン **70** を与えるが、2 位の置換基 R^1 と求核剤の組み合わせが限定され る点に問題があった。これまで報告されている結果を Table 3 にまとめて示す ^{7a-d}。

S_N2′反応は、アニオン中間体 69 の安定性が反応性に大きく影響する。このため、置換基 R¹がアルキル基の場合、フェニルリチウムのような強い求核剤でさえ全く反応が進行しな い(Entry 2)。R¹をフェニル基、カルボキシ基、フッ素置換基のような電子求引基にするこ とで反応性は向上するが、それでも求核剤にアルキルリチウム、リチウムアミド、水素化 アルミニウムリチウム等の求核性の高い反応剤を必要とする。例えば、比較的広範な求核 剤と反応する α-トリフルオロメチルスチレン(68a, R¹ = Ph, R² = H)でも、エステルエノラ ートとの S_N2′反応は進行しない(Entry 5)。エステルエノラートを求核剤とする唯一の反応 例は、無置換の 3.3.3-トリフルオロプロペンについて報告されているが、この基質もさら に求核性の弱いジエステルエノラートとは S_N2′反応を起こさない(Entry 9)。

ー方、(1-トリフルオロメチルビニル)シラン 27 は、ケイ素のα-アニオン安定化効果により S_N2′反応の付加中間体 28 を安定化する(式 38)。このため、27 はこれまで報告されたト

リフルオロプロペン誘導体に比べて反応性が高く、様々な求核剤と反応できるものと期待できる。この仮説に基づき、27 と各種求核剤との S_N2'反応を試みることとした。

2-2 トリフェニル(1-トリフルオロメチルビニル)シランの S_N2'反応

第1節で調製した(1-トリフルオロメチルビニル)シラン 27 のうち、トリフェニルシリル 基を有する 27c は、安定な固体であるために取り扱い易く、空気中室温でも長期保存が可 能である。そこで、まず 27c を基質として S_N2'反応の検討を行った(Table 4)。

	Table 4					
		F ₃ C SiP 27c	h ₃	1 → F	F₂C → Nu SiPh ₃ 71	
Entry	NuM (eq.)	Solv.	Temp.	Time / h	71 / % (conv. / %)	27c / %
1	MeLi (1.5)	THF	$-78 \text{ °C} \rightarrow 0 \text{ °}$	1.0	79 (89) (71a)	11
2	ⁿ BuLi (2.0)	THF	−78 °C	0.1	84 (84) (71b)	0
3	PhLi (1.4)	THF	-78 °C → 0 °C	2.5	68 (76) (71c)	12
4	OLi Ph OMe (1.0) 72	THF	–78 °C → reflux	7	29 (61) ^a (71d)	53
5	O OLi EtO OEt (1.0) Ph 73	THF	–78 °C → reflux	27	0 ^b	85
6	KCN (1.0)	CH₃CN	$0 ^{\circ}\text{C} \rightarrow \text{reflux}$	95	0	14
7	TMSCN (1.0)	THF	$rt \rightarrow reflux$	16	0	46
8	TMSCN (1.0)	CH_2CI_2	$rt \rightarrow reflux$	19	0	93

a: 求核剤のエステルが先に消失 b: 求核剤のジエステルを 82%回収

アルキルリチウムやフェニルリチウムとの反応はいずれも収率よく進行した(Entries 1~3)。ただし、反応終点近くで反応速度が遅くなり、等モル量の求核剤を加えても 27c は 消失しなかった。この原因は明らかではないが、SN2 反応によって脱離したフッ化物イオ ンが 27c のケイ素原子を攻撃してシリカート 74 を形成し、反応を阻害している可能性も ある(Scheme7)。

反応性の低い求核種であるエステルエノラート72との反応では、27cが完全に消費され なかったものの、61%の変換収率で生成物が得られた。Table 3 からわかるように、アル キルリチウムとエステルエノラートの両求核剤と S_N2′反応を起こすトリフルオロプロペン 類はこれまで報告例が無かった。従って、トリフェニル(1・トリフルオロメチルビニル)シラ ン 27c は、これまでに知られるトリフルオロプロペン誘導体に比べて反応性に富むと言え る。ただし、エステルエノラートより反応性の低いマロン酸エステルのエノラート 73 とは、 THF 中加熱還流を行っても全く反応しなかった。

続いて、官能基として有用なシアノ基の導入を試みた。シアン化カリウムをアセトニト リル中で 27c に作用させ、さらにクラウンエーテルを加えたが、反応は全く進行しなかっ た。これは、シアン化カリウムのアセトニトリルへの溶解度が低いためと考え、次にトリ メチルシリルシアニドを THF やジクロロメタン中で作用させた。しかしやはり反応は進 行せず、ルイス酸として三フッ化ホウ素-エーテル錯体を加えても S_N2'生成物は全く得ら れなかった。

以上の検討により、(1-トリフルオロメチルビニル)シラン 27c はアルキルリチウム、ア リールリチウム、エステルエノラートと反応し、これまでの基質に比べ、広範な求核剤と 反応できることが明らかになった。またマロン酸エステルのエノラートやシアン化物イオ ンとは反応しないなど、求核剤の適用限界についての知見も得られた。

2-3 ジメチルフェニル(1-トリフルオロメチルビニル)シランの S_N2'反応

先に反応を検討したトリフェニル(1-トリフルオロメチルビニル)シラン 27c は、ケイ素 上に三つのフェニル基を持つかなり嵩高いシリル基を有しており、求核剤の攻撃を立体的 に妨げている可能性がある。そこで、適度な電子求引性と嵩高さを有する基質として、ジ メチルフェニル(1-トリフルオロメチルビニル)シラン 27d を用いて S_N2'反応を検討するこ とにした。27d も、27c と同様に空気中室温でも安定で長期保存に耐えることから、ジフ ルオロアルケン合成の出発物質として適している。

まず、27dに1.5倍モル量のブチルリチウムを作用させたところ、対応するgem-ジフル オロビニルシラン33aが71%の収率で得られた(式39)。このとき原料は消失したが、33a 以外に同定不可能な副生成物が多数観察された。この原因として、27dに比べてシリル基 が立体的に小さくなったために求核剤がケイ素を攻撃し易くなり、ブチルリチウムを加え

たときの温度上昇で副反応が進行してしまったことが考えられる。そこで、1.05 倍モル量 のブチルリチウムを20分かけてゆっくり滴下したところ、反応が完結し33aの収率は93% まで向上した(式 40)。

ブチルリチウムとの反応から、27d は反応性が高い優れた基質であることがわかったので、次にフェニルリチウムとの S_N2'反応について調べることとした(Table 5)。

		Table 5				
		F ₃ C		PhLi	→ F ₂ C	= Ph
		511	we2Ph	/ THF		SiMe ₂ Ph
		27d				33b
Entry	Eq of PhLi	Temp.	Time / h	33b / %	27d / %	Comments
1	1.1	– 78 °C → rt	1.5	77	8	
2	1.3	– 78 °C → 0 °C	0.5	82	0	
3	1.1	– 78 °C → rt	5	44	34	Et ₂ O 溶媒
4	1.1	– 78 °C	0.5	77	0	THF-HMPA (4:1) 混合溶媒
5	1.1	-78 °C → reflux	16	53	24	PhMgBr 使用
6	1.1	– 78 °C → 0 °C	5	85	9	TMEDA (1.0 eq) 添加
7	1.4	– 78 °C	0.5	85	1	TMEDA (1.0 eq) 添加

1.1 倍モル量のフェニルリチウムを 27d に作用させると、27d が 8%回収され、S_N2' 反応生成物 33b の収率は 77%であった(Entry 1)。他の溶媒やフェニルマグネシウムブ ロミドを用いて同様に反応を行ったが、良い結果を与えなかった (Entries 3, 4, 5)。 N,N,N',N'-テトラメチルエチレンジアミン(TMEDA)を加えて反応を行ったところ、33b の収率が85%まで向上した(Entries 6,7)。これは、TMEDAの添加でフェニルリチウムの反応性が高くなったためと考えられる。

以上の検討で、**27d** とブチルリチウムやフェニルリチウムとの反応が極めて円滑に進行することがわかった。さらに、反応性が低い求核剤との反応を試みた(Table 6)。

	Table 6						
		F ₃ C-(S 270	iMe ₂ Ph	NuM	F ₂ C SiMe ₂ Ph 77		
Entry	NuM (eq)	Solv.	Temp.	Time / h	33 / %	27d / %	Comments
1	OLi Ph NMe ₂ (1.1) 75	THF	–78 °C → rt	1.5	65 (33c)	18	
2	75 (1.5)	THF	-78 °C → 0 °C	1.5	85 (33c)	0	
3	O ONa EtO OEt (2.0) 76	THF	$0 {}^{\circ}\mathrm{C} \rightarrow \mathrm{reflux}$	24	55 (33d)	2	77 ~ 10%
4	76 (1.1)	DMF	0 °C → 70 °C	24	44 (33d)	0	77 34%
5	S - + Li (1.1) 78	THF	–78 °C → rt	1.0	75 (33e)	8	
6	KCN (1.5)	DMF	0 °C → 70 °C	7	0	0	
7	Et₄NCN (1.1)	CH_2CI_2	$rt \rightarrow reflux$	13	0	44	
8	LDA (1.5)	THF	–78 °C → 0 °C	1.0	75 (33f)	0	
9	N ⁻ L ⁺ (1.1) 79	THF	–78 °C	1.0	51 (33g)	> 7	
10	LiAIH ₄ (2.0)	THF	0 °C	3	76 (91 ^a) (33h)	0	
11	NaOMe (1.1)	DMF	–47 °C → rt	0.3	0	0	77 75%

77 : (Me₂PhSi)₂O a : ¹⁹F NMR Yield

27dはアミドエノラート**75**と速やかに反応し、65%の収率で S_N2′生成物を与えた(Entry 1)。**75**を1.5倍モル量に増やしたところ、原料が完全に消失し、**33c**の収率は85%まで向上した(Entry 2)。また **27d**は、これまで報告例のないマロン酸エステルのエノラート**79**

とも反応し、THF 溶媒中 2 倍モル量の 76 を 27d に作用させると、対応する gem-ジフル オロビニルシラン 33d を 55%の収率で与えた (Entry 3)。このときジシロキサン 77 も少 量得られた(Scheme 8)。溶媒をDMF に代えると、77 の生成量が増加するとともに 33d の 収率が低下した(Entry 4)。

Scheme 8

この他、アシルアニオン等価体であるジチアンのアニオン 78 や、窒素求核種であるリチ ウムジイソプロピルアミド(LDA)、リチウムピロリジド 79、ヒドリド反応剤である水素化 アルミニウムリチウムを用いた場合も 27d への S_N2′反応が円滑に進行した(Entries 5, 8, 9, 10)。

シアン化カリウムやテトラエチルアンモニウムシアニドを用いてシアン化物イオンの S_N2′反応を試みたが、期待した生成物は全く得られなかった(Entries 6,7)。また、ナトリウ ムメトキシドを求核剤に用いた場合は、アルコキシドがアルケン部ではなくケイ素を選択 的に攻撃し、ジシロキサン 77 を高収率で与えるのみで、目的とする S_N2′反応は進行しな かった(Entry 11)。

本節では、(1-トリフルオロメチルビニル)シラン 27 が広範な求核剤と反応することを明 らかにした。従来、SN2′反応に活性なトリフルオロプロペン類としては、α-トリフルオロ メチルスチレン 20a が知られる。この 20a とビニルシラン 27 の反応性を比較すると、次 のようになる(Table 7)。

a: 文献値。ref. 7a b: エステルエノラートとのみ記載 c: 未検討 d: 報告なし

ブチルリチウムやフェニルリチウムといった反応性の高い求核剤を作用させた場合は、 ビニルシラン 27d と α -トリフルオロメチルスチレン 20a がほぼ同程度の高い収率で S_N2' 生成物を与え、27c での収率はやや落ちる(Entries 1,2)。一方、20a が求核性の低いエステ ルエノラートとは全く反応しないのに対し、27c は 29%と低収率ながら S_N2'生成物を与え る(Entry 3)。また、27c と 27d にアミドエノラートを同一条件で作用させると、27c はほと んど反応しないのに対し 27d は反応が効率よく進行する (Entry 4)。さらに求核性が落ちる マロン酸ジエチルのエノラートでは、式41、42 に示すように 27d のみ S_N2'反応が進行する。

以上の比較から、ジメチルフェニルビニルシラン 27d は、S_N2′反応の一般性においてこ れまで報告されたトリフルオロプロペン誘導体に勝るだけでなく、トリフェニルビニルシ ラン 27c と比べても反応性の高い優れた基質であるといえる。 本節において、(1-トリフルオロメチルビニル)シラン 27 が S_N2′反応の基質として有用で あり、多様な gem-ジフルオロビニルシラン 29 の出発物質となることを立証できた。次節 では、こうして調製した gem-ジフルオロビニルシラン 29 の変換反応について述べる。 第3節 gem-ジフルオロビニルシランの置換反応による gem-ジフルオロア ルケンの合成

3-1 緒言

第2節では、(1-トリフルオロメチルビニル)シラン27を出発物質とし、そのS_N2′反応に よって多様な gem-ジフルオロビニルシラン29 が収率よく調製できることを明らかにした。 続いて、29 のシリル基を求電子的な置換反応により望みの官能基に変換できれば、本研究 の目標である gem-ジフルオロアルケン30 の合成を達成することができる(Scheme 9)。

Scheme 9

ビニルシランの反応に関しては、現在までに多くの研究がなされている。初期には、ア ルケンやアルケニルハライド合成^{10,11,12}や、Friedel-Crafts アシル化による不飽和ケトン 合成¹²、アルデヒドとの反応¹⁰が知られる。また、最近ではパラジウム触媒を用いるクロ スカップリング反応¹³が見出され、現在も改良法が開発されている。しかしながら、ビニ ルシランの反応性が他のビニルメタル種に比べ低いため、上記の既知反応は一般性に乏し いことも多く、必ずしも gem-ジフルオロビニルシランに適用できるとは限らない。

そこで筆者は、gem-ジフルオロビニルシラン 29 を用い、そのシリル基を他の置換基に 変換する反応を検討した。

3-2 一置換 gem-ジフルオロアルケンの合成

最初に、シリル基の水素原子による置換を行うため、酸によるビニルシラン **33a** のプロトン化を試みた。S_N2′反応により調製した *gem*-ジフルオロビニルシラン **33a** は酢酸のような弱酸とは反応しなかったが、強酸であるトリフルオロメタンスルホン酸で処理したところ、プロトン化が進行し一置換 *gem*-ジフルオロアルケン **34a** を与えた(式 43)。

33a から 34a への変換に用いた酸によるプロトン化の機構は、下の Scheme 10 に示す 通りである。すなわち、まず 33a のジフルオロアルケン部がプロトン化される。この時、 フッ素のα位炭素上に生じるカチオン 82 は、フッ素によるα-カチオン安定化とケイ素に よるβ-カチオン安定化効果により二重に安定化されている。そのため中間体 82 の生成が 促進され、続いてシリル基が脱離することにより、34a が生成している。当研究室ではす でに、シリル基を持たないジフルオロアルケン 83 をプロトン化するには、超強酸の FSO₃H•SbF₅を用いる必要があることを明らかにしている(Table 8)²²。このことから、一 般に求電子剤とは反応しにくいジフルオロアルケンが、本反応で円滑にプロトン化を受け るのは、シリル基の効果に負うところが大きいと言える。

Scheme 10

Table 8

上に述べた 33a のプロトン化は強酸を必要とするため、官能基を有する基質に対しては 必ずしも適用できるとは限らない。そこで、より穏和な条件下でシリル基を水素原子に置 換する反応として、シリカートを経由する反応を検討した。ビニルシランにフッ化物イオ ンを加えるとシリカートが生成し、穏やかな条件で炭素-ケイ素結合の加水分解が起こっ てシリル基が水素原子で置換されたアルケンを与える。この反応は古くから知られ、ケイ 素上の置換基が反応に及ぼす影響についての研究も行われている(式 44, 45)¹¹。これらの報 告を見ると、シリル基をシリカート経由で水素原子へ置換する反応では、ジメチルフェニ ルシリル基が高活性であり、トリフェニルシリル基、トリメチルシリル基の順に反応性が 低くなることが分かる。これらの例と同様に、S_N2′反応によって調製した gem-ジフルオロ ビニルシラン 33a を加水分解すれば、一置換 gem-ジフルオロアルケン 34a が得られる。 そこで筆者は、これらの報告を参考にして 33a からの一置換アルケン合成を検討した。そ の結果を Table 9 に示す。

1: ¹⁹F NMR Yield

rt

THF²

6

2: H₂Oを 33a の 10 倍モル量添加

2.0

N.R.

gem・ジフルオロビニルシラン 33a に対し THF 中室温でテトラブチルアンモニウムフル オリド(TBAF)の THF 溶液を作用させたところ、試薬に微量に含まれる水により加水分解 が速やかに進行し、望みの一置換 gem・ジフルオロアルケン 34a が 63%の収率で得られた (Entry 1)。33a から 34a への変換は、フッ素を含まないビニルシランの加水分解に比べて 穏和な条件で進行している(式 44 参照)。これは、ジフルオロアルケン部の電子求引性によ りケイ素上が電子不足になり、フッ化物イオンの攻撃が促進されたためと考えられる。溶 媒を非プロトン性極性溶媒である DMF、DMSO、DMI に代えると反応が促進され、DMI 中で反応を行った際に最高収率である 70%で **34a** が得られた(Entry 4)。Entries 5,6 では、 プロトン性溶媒中で反応を行う、あるいは THF 溶媒に積極的に水を添加することで収率 の向上を図った。しかし、いずれの場合も反応が全く進行せず、原料回収に終わった。こ れは TBAF 中のフッ化物イオンが多量の水やメタノールによる溶媒和を受け、失活したた めと考えている。

反応終了時に反応液の¹⁹F NMR スペクトルを測定したところ、**34a** 以外に副生物を観測 することができなかった。そこで、水をほとんど含まないフッ化物イオン源としてトリス (ジエチルアミノ)スルホニウムトリメチルジフルオロシリカート ((Et₂N)₃S⁺⁻SiMe₃F₂、 TASF(Et))を加え、¹⁹F NMR による反応の追跡を行った(Table 10)。反応開始から 15 分 後には原料の 70%が消費され、33a にフッ化物イオンが配位したシリカートと思われる 87 のピークが観測された。時間とともに 33a、87 が減少し、アルケン 34a が増加したが、33a、 34a、87 の合計の物質量は徐々に減少した。従って、Scheme 10 に示すように、シリルフ ルオリドの β 脱離により 87 がフルオロアセチレン 88 となって分解する経路が考えられる。

シリカートを経由することにより穏やかな条件下でシリル基の水素原子による置換が進

行することが分かったので、この反応を $S_N2'反応と組み合わせることにより、出発物質の$ (1-トリフルオロメチルビニル)シランから one-pot で一置換 gem-ジフルオロアルケンを合 成しようと考えた。27d と求核剤との $S_N2'反応を第2節で述べた条件で行った後、そのま$ まテトラブチルアンモニウムフルオリドを作用させると、期待通り対応する一置換 gem-ジフルオロアルケンが一挙に効率良く得られた(Table 11)。

Table 11

F ₃ C- SiMe ₂ Ph 27d	$ \xrightarrow{\text{NuM}} F_2 C \xrightarrow{\text{Nu}} SiMe_2 Ph $ 33	TBAF (1.1) Conditions / THF	\rightarrow F ₂ C \rightarrow H
Entry	NuM (eq)	Conditions	34 / %
1	ⁿ C ₆ H ₁₃ Li (1.0)	rt, 2 h	(91) ^a (34i)
2	S Ph (1.0)	rt, 2 h	80 (34j)
3	PhCH ₂ CH=C(OLi)NMe ₂ (1.5)	0 °C, 2 h	64 (34c)

a: 19F NMR Yield

以上のように、gem-ジフルオロビニルシラン **33** に酸やフッ化物イオンを作用させるこ とで、一置換 gem-ジフルオロアルケンが得られることを示した。また、この反応を $S_N 2'$ 反応と組み合わせ連続して行うことにより、出発物質である(1-トリフルオロメチルビニル) シランから one-pot で一置換 gem-ジフルオロアルケンを合成することにも成功した。さら に、ケイ素の β -カチオン安定化効果により、**33** の酸に対する反応性が通常のジフルオロ アルケンに比べ高くなっていることも明らかにした。

3-3 臭化 gem-ジフルオロビニルの合成

3-2 で述べた通り、gem-ジフルオロビニルシラン 33a の二重結合は通常の gem-ジフルオ ロアルケンに比べプロトン化を受けやすい。ここで、プロトンの代わりに他の求電子剤を 33a に作用させれば、官能基化された gem-ジフルオロアルケンを得ることができるはずで ある(Scheme 12)。すでに、gem-ジフルオロアルケンに臭素を作用させるとジブロモ化が 進行することが知られている²³。そこでまず、33a を臭化 gem-ジフルオロビニル 37a へ変

ビニルシランに臭素を作用させると、求電子置換反応によって臭化ビニルを与えること が知られている(式 46)¹¹。そこで、*gem*-ジフルオロビニルシラン **33a** に臭素を作用させた ところ、ジブロモ体 **36a** が 37%の収率で得られた(式 47)。この時、目的とする臭化ビニル

37a もわずかに生成したが、物質収支が悪く、同定できない不安定な化合物も得られた上、

33a も完全には消費しなかった。式46の場合と違い脱シリルブロミドが自発的に進行しな かった原因は、フッ素のα位に生じたカチオン93が安定でシリル基の脱離が遅く、ブロミ ドイオンの攻撃が優先して起こったためと考えられる(Scheme 13)。一方、未反応の臭素が 37aに付加した94と思われる化合物も、単能には至らなかったものの粗生成物の¹⁹F NMR やGC-MS で確認できた。

Scheme 13

そこで、ジブロモ体 36a を調製した後、脱シリルブロミドにより 37a の合成を試みた。 -78 ℃ で 33a に臭素を一時間かけて滴下したところ、33a がほぼ完全に消失し、ジブロモ 体 36a のみが確認された。そこで、さらに TBAF を添加し反応液を ¹⁹F NMR で観測した ところ、33a から 88%という高収率で 37a が生成していることを確認できた(式 48)。

gem-ジフルオロビニルシラン 33a の臭素置換に成功したので、次にヨウ素置換を試みた。 まずヨウ素を 33a に作用させたが、全く反応しなかった。そこで、より活性な I+を発生す ると思われる一塩化ヨウ素を用いて反応を行ったところ(式 49)、目的とするヨウ素化は進 行せずにケイ素上のフェニル基が切断され、gem-ジフルオロビニルジメチルクロロシラン 95 から生成したと思われるジシロキサン 96 とヨードベンゼンが得られた。

ヨウ素への変換については今後さらに検討する必要があるが、ジブロモ化-脱シリルブ ロミドの二段階反応を one-pot で行うことにより、*gem*-ジフルオロビニルシラン **33a** から 臭化 *gem*-ジフルオロビニル **37a** への変換を達成できた。 3-4 二置換 gem-ジフルオロアルケンの合成

3-2 では、gem-ジフルオロビニルシラン 33a のシリル基を TBAF でシリカートとするこ とにより、求電子剤である水分子との反応を促進した。同様にして 33a のシリル基をアー ト錯体化し、炭素求電子剤と反応させれば、炭素-炭素結合が生成できると考えられる。 そこでまず初めに、アルデヒドを用いて炭素-炭素結合の形成を検討した。

DMF 溶媒中ベンズアルデヒド共存下、**33a** にビニルシランの活性化剤として TBAF の THF 溶液を加えたところ、**33a** は速やかに消失し、ベンズアルデヒドと反応したアリルア ルコール **97a** が 22%得られた(Table 4, Entry1)。この際、同時にジフルオロアルケン **34a** も51%副生したが、これはTBAF の THF 溶液に含まれる微量の水によって生成している。 そこで、**97a** の収率向上のために TBAF 以外の活性化剤を検討することにした(Table 4)。

Table 12

F ₂ C	- ⁿ Bu	· Å –	Activate	$F_2C = \int_{-r}^{r}$	'Bu / + (F ₂ C=		
S	iMe ₂ Ph	' Ph´ `H		но	Pn / -	Ĥ	Ϊ
3	3a	(1.1 eq)		97a		34a	
	Entry	Activator (eq)	Solv.	Temp., Time / h	97a /%		
	1 ¹	TBAF (2.0)	THF	rt, 1.5 h	22		
	2	CsF (2.0)	THF	rt → reflux, 3 h	0		
	3	CsF (2.0)	DMI	rt → 80 °C, 12 h	51		
	4	TASF(Me)	THF	rt → 70 °C, 2 h	49		
	5	TASF(Me)	CH₃CN	rt → 50 °C, 2.5	Trace ²		
	6	TASF(Me)	DMI	rt, 3 h	65		
	7	TASF(Me)	DMI	rt → 70 °C, 6 h	50		
	8	TASF(Et) (1.1)	THF	rt, 5 h	69		
	9	TASF(Et) (1.1)	DMF	rt, 5 h	56		
	10	TASF(Et) (1.1)	DMI	rt, 2.5 h	62		

1: ベンズアルデヒド 2.3 eq 使用

2: 34a が主生成物

活性化剤となるフッ化物イオン源としてフッ化セシウムを用い、DMI 中で反応を行うと、

97aの収率が 51%に向上した(Entry 3)。また、トリス(ジメチルアミノ)スルホニウムトリ メチルジフルオロシリカート ((Me₂N)₃S⁺ ⁻SiMe₃F₂、TASF(Me))を用いても**97a** が 49% 得られた(Entry 4)が、TASF(Me)は THF に難溶であったため、他の溶媒を検討した。活 性プロトンを持つアセトニトリル中では **97a** はほとんど得られず、反応液の ¹⁹F NMR を 観測すると、反応停止前に既にジフルオロアルケン **34a** が主生成物として存在することが 確かめられた(Entry 5)。これは、シリカート **87** がアセトニトリルのα位のプロトンを引 き抜いたためと考えられる。TASF(Me)が溶解する DMI 中では反応が速やかに進行し、収 率も 65%まで上昇した(Entry 6)。興味深いことに、触媒量(10 mol %)の TASF(Me)を用い た場合も、収率は 50%とやや低下するものの反応が進行した(Entry 7)。この反応機構は次 のように考えられる(Scheme 14)。

33a にフッ化物イオンが作用するとシリカート 87 が生成し、ベンズアルデヒドと反応し てアルコキシド 98 となる。この 98 が 33a のシリル基を攻撃することで酸素配位子を持つ シリカート 99 が形成し、これがさらにベンズアルデヒドと反応してアルコキシドイオン 98 を再生する。つまり、98 がフッ化物イオンの代わりに活性化剤として働くため、反応 は触媒的に進行する。一方、シリルエーテル 100 は反応停止時に加水分解され、目的のア ルコール 97a を与える。TASF(Me)を触媒量用いた場合、等モル量用いたときよりも高い 反応温度を必要としたが、これはシリカート 99の反応性が 87に比べて低いためと考えら れる。また収率の低下は、一部の 99 がアルデヒドと反応する前にフルオロアセチレン 34a へと分解したためであろう。

最終的には、溶解度の高い TASF(Et)を THF 中用いることにより 69%で 97a が得られた (Entry 8)。こうしてベンズアルデヒドとの反応による炭素-炭素結合の形成が進行することを見出したので、次にこの条件を他のアルデヒドへ適用し、反応の一般性を検討することにした(Table 13)。

Table 13

Entry	R	Conditions	97 /%
1	Ph	rt, 5 h	69 (97a)
2	PhCH ₂ CH ₂	rt → reflux, 1.5 h	< 21 (97b)
3	c-Hex	rt → 70 °C, 6 h	0 (97c)
4	(CH ₃) ₃ C	rt, 1 h	< 16 (97d)
5	PhCH=CH	rt → 50 ºC, 1.5 h	0 (97e)

第一級アルデヒドの 3-フェニルプロパナールを基質として用い、ベンズアルデヒドと同様の条件で反応を行ったところ、アルコール 97b の収率は 21%以下であった(Entry 2)。 また、第二級アルデヒドであるシクロヘキサンカルバルデヒドは、対応するアルコール 97c を全く与えなかった(Entry 3)。3-フェニルプロパナールを用いたときに反応液の ¹⁹F NMR を測定すると、34a が主なシグナルとして観測されたことから、シリカート 87 がカルボニ ル基のα-水素を引き抜いたと考えられる。そこで、α-水素を持たないピバルアルデヒド を基質として用いたが(Entry 4)、アルコール 97d はわずかに生成するのみだった。シンナ ムアルデヒドは対応するアルコール 97e を全く与えなかった(Entry 5)。 次に、gem-ジフルオロビニルシランの S_N2'反応による調製とアルデヒドへの付加を one-pot で行うことにより、二置換 gem-ジフルオロアルケンの合成を試みた。27d とブチ ルリチウムとの S_N2'反応を行った後、反応を停止することなく TASF(Et)とベンズアルデ ヒドを作用させると、アリルアルコール 97a が収率 61%で得られた(式 50)。これは、33a を単離した場合とほぼ同程度の収率であり、煩雑な中間体の単離操作が不要となる点で優 れている。

以上のように、TASF(Et)のようなフッ化物イオン源を添加することにより、gem-ジフ ルオロビニルシラン 33a のアルデヒドに対する求核攻撃が進行し、gem-ジフルオロアリル アルコールを与えることが分かった。但し、ベンズアルデヒド以外のアルデヒドでは反応 が円滑に進行しないなど、改善の余地が残されている。

3-5 その他の変換反応:シリカートを経由するアルキル化とアシル化、 Friedel-Crafts型反応、クロスカップリング反応および玉尾酸化

ここまで述べた検討から、gem-ジフルオロビニルシラン 33a は臭素やトリフルオロメタ ンスルホン酸のような強い求電子剤と反応し、また活性なシリカートを形成すると弱い求 電子剤である水やアルデヒドとの反応も進行することが分かった。そこで、これらの知見 を基に他の反応について検討を行った。

まず、Friedle-Crafts アシル化及びアルキル化を検討した。しかし、ベンゾイルクロリ ドやアセチルクロリド、アルキルクロリドをルイス酸存在下 **33a** に作用させても目的とす る不飽和ケトンやアルケンはほとんど得られなかった(式 51)。

Friedel-Crafts タイプの反応が進行しなかったので、33a をシリカートとすることでシ リル基の変換を試みた。すなわち、TASF(Et)存在下 33a に酸塩化物を作用させ、不飽和ケ トンを得ようとしたが、酸塩化物が速やかに酸フッ化物に変換されてしまい、 TASF(Et) を過剰に加えても反応は進行しなかった(式 52)。また、ベンゾイルクロリドの代わりにベ ンジルクロリドやアリルクロリドを用いた場合も、望みの化合物はごくわずか得られるの みだった。

シリカートを利用する他の反応として、パラジウム触媒を用いるクロスカップリング反応や玉尾酸化が知られる。そこでこれらの反応について検討を行ったが、いずれも望みの反応はほとんど進行しなかった。クロスカップリング反応では原料が消費されるのみで、カップリング体は確認できなかった(式 53)。一方、玉尾酸化の検討では、添加した臭素によってアルケン部が臭素化され、ケトンは生成しなかった(式 54)。

第3節において、gem-ジフルオロビニルシラン 33a のシリル基を種々官能基へ変換する ことを試みた。その結果、プロトン化、ブロモ化に成功し、さらに炭素-炭素結合生成反 応であるビニルシランのアルデヒドへの求核付加が進行することを見出し、対応する gem-ジフルオロアリルアルコールの合成が可能なことを示した。 総括

筆者は修士課程において、ケイ素化合物の持つ特異な性質に注目し、(1-トリフルオロメ チルビニル)シランから gem-ジフルオロビニルシランを経由する新しい gem-ジフルオロア ルケンの合成法を開発した。

第1節では、これまで単離例のなかった(1-トリフルオロメチルビニル)シランを合成、単離した結果について述べた。トリフルオロメチル=シリル=ケトンのメチレン化、あるいは(1-トリフルオロメチルビニル)マグネシウムブロミドのシリル化によって、各種(1-トリフルオロメチルビニル)シランの調製に成功し、これまでの報告とは異なり、空気中室温でも安定な化合物であることを明らかにした。

第2節では、調製した(1-トリフルオロメチルビニル)シランと種々の求核剤とのS_N2'反応を行った結果について述べた。(1-トリフルオロメチルビニル)シランはマロン酸エステルのエノラートなどの比較的反応性の低いものを含む広範な求核剤とのS_N2'反応が進行することを明らかにし、これまで報告例のなかった*gem*-ジフルオロビニルシランの調製法を確立することができた。

第3節では、gem-ジフルオロビニルシランから gem-ジフルオロアルケンへの変換法を 検討した結果について述べた。すなわち、シリル基を水素原子、臭素原子、ヒドロキシア ルキル基へと変換することに成功し、多様な gem-ジフルオロアルケンの合成を達成した。 シリル基の水素原子、ヒドロキシアルキル基への変換は S_N2′反応と one-pot で行うことが でき、対応する一置換、二置換 gem-ジフルオロアルケンを一挙に合成することができた。 またこの際、gem-ジフルオロビニルシランがフッ素やシリル基の電子的効果によって、通 常の gem-ジフルオロアルケンやビニルシランに比べ高い反応性を示すことを明らかにし た。

以上のように筆者は、空気中室温でも安定なケイ素化合物を出発物質および合成中間体 として用いることにより、広範な置換様式に対応できる gem-ジフルオロアルケンの合成法 を開発した。本法は、形式的に求核剤 Nu と求電子剤 E を導入しながら gem-ジフルオロア ルケンを合成する手法であり、自由に Nu と E を選択しながら合成することができる点で、 下に示す Wittig タイプの従来法と比べ高い一般性を有している。

This method

各種分析装置は以下に示した機種を使用した。

¹H 核磁気共鳴スペクトル (¹H NMR)

Bruker DRX500 (500 MHz)

Bruker Avance500 (500 MHz)

JEOL-AL270 (270 Hz)

¹³C 核磁気共鳴スペクトル (¹³C NMR)

Bruker DRX500 (125 MHz)

Bruker Avance500

赤外吸収スペクトル (IR)

Horiba FT-300S

高速液体クロマトグラフィー(HPLC)

ガスクロマトグラフィー(GC-MS, GC)

Shimadzu GC-17A, QP-5000

J&W Scientific DB-WAX (0.25 mm x 30 m) (He, 130 kPa)

NMR スペクトルは、特に断らない限り ¹H NMR ではテトラメチルシラン($\delta = 0.00$)を, ¹³C NMR では重クロロホルム($\delta = 77.0$)を、¹⁹F NMR ではヘキサフルオロベンゼン($\delta = 0.00$)をそれぞれ内部標準として使用した。¹⁹F NMR 収率の計算は、ベンゾトリフルオリ ドを内部標準に用いて行った。

融点(mp)は未補正値を示す。

薄層クロマトグラフィー(TLC)には Wakogel-B5f (silica gel)を、カラムクロマトグラフィーには関東化学株式会社 シリカゲル 60 N (球状、中性)、をそれぞれ使用した。

ジクロロメタン、1,2-ジクロロエタン、アセトニトリルは五酸化リン、次いで水素化カ

ルシウムより蒸留し、モレキュラーシーブ 4A(MS 4A)を加えて乾燥、保存したものを使用 した。トルエンは共沸により水を除去した後、蒸留したものに MS 4A を加え保存したもの を使用した。メタノールはマグネシウムメトキシドより蒸留し、モレキュラーシーブ 3A(MS3A)を加えて保存したものを用いた。*N,N*-ジメチルホルムアミド(DMF)は減圧下水 素化ナトリウムより蒸留し、アルゴン下で MS 4A を加えて密封、保存したものを用いた。 テトラヒドロフラン(THF)、ジエチルエーテルは市販の乾燥品(関東化学)に MS 4A を加え 保存したものを使用した。2,2,2-トリフルオロエタノールは硫酸マグネシウムと炭酸カルシ ウムの混合物より蒸留し、アルゴン下でモレキュラーシーブ 4A(MS4A)を加えて密封、保 存したものを用いた。

なお、全ての実験はアルゴン雰囲気下で行った。

第1節 (1・トリフルオロメチルビニル)シランの調製

2,2,2-トリフルオロ-1-トリフェニルシリルエタノン(**50c**)は文献の方法に従って調製した¹⁸。

トリフェニル(1-トリフルオロメチルビニル)シラン(27c)は以下のように合成した。

アルゴン雰囲気下、亜鉛(2.92 g, 44.7 mmol)の THF けん濁液(100 ml)に、室温でジョー ドメタン(4.01 g, 15.0 mmol)をゆっくり加える。室温で 30 分攪拌する。テトライソプロポ キシチタン(3.03 ml, 11.0 mmol)を加え、30 分攪拌した後 2,2,2・トリフルオロ・1・トリフェ ニルシリルエタノン(50c)(3.53 g, 9.92 mmol)の THF 溶液(10 ml)を加え、3 時間加熱還流 する。TLC で原料の消失を確認後、室温まで冷却してから水 100 ml を加え反応を停止す る。酢酸エチルで抽出し、飽和食塩水で洗浄後、有機相を無水硫酸マグネシウムで乾燥し、 溶媒を減圧留去して得られる残渣をカラムクロマトグラフィーにより精製し、トリフェニ ル(1・トリフルオロメチルビニル)シラン(27c)(2.02 g, 5.70 mmol)を得る。 ジメチルフェニル(1-トリフルオロメチルビニル)シラン(27d)、ジフェニルメチル(1-トリ フルオロメチルビニル)シラン(27h)、メチルフェニル (1-トリフルオロメチルビニル)シラ ノール(27i)は以下のように合成した。

アルゴン雰囲気下、マグネシウム(2.92 g, 0.12 mmol)を THF(200 ml)にとり、ジメチル フェニルクロロシラン(33.6 ml, 0.2 mol)を加え 0 ℃に冷却する。3,3,3・トリフルオロ・2・ブ ロモ・プロペン(32)(10.4 ml, 0.1 mol)の THF 溶液(20 ml)を 2 時間かけて加え、さらに 0 ℃ で 1 時間攪拌後、室温で 19 時間攪拌する。溶液を 0 ℃に冷却後、水(200 ml)で反応を停 止する。ジエチルエーテルで抽出し、飽和食塩水で洗浄後無水硫酸マグネシウムで乾燥す る。溶媒をロータリーエバポレーターで注意深く留去し、得られた残渣をカラムクロマト グラフィーによって精製した後、減圧蒸留によりジメチルフェニル(1・トリフルオロメチル ビニル)シラン(27d)が得られる。沸点 68 ℃ (8 mmHg)。

以下、(1-トリフルオロメチルビニル)シランの物性を示す。

トリフェニル(1-トリフルオロメチルビニル)シラン(27c)

白色結晶

¹H NMR (500 MHz, CDCl₃) δ 5.96 (1H, s), 6.72 (1H, bs), 7.35-7.41 (2H, m), 7.43-7.47 (1H, m), 7.54-7.57 (2H, m)

¹³C NMR (126 MHz, CDCl₃) δ 125.4 (q, J_{CF} = 279 Hz), 128.0, 130.1, 131.9, 136.2, 138.2 (q, J_{CF} = 31 Hz), 138.9 (q, J_{CF} = 8 Hz)

¹⁹F NMR (254 MHz, CDCl₃ / C₆D₆) δ 102.6 (3F, s)

ジメチルフェニル(1-トリフルオロメチルビニル)シラン(27d)

無色油状物

¹H NMR (500 MHz, CDCl₃) δ 0.32 (6H,s,), 5.32 (1H,s), 5.84 (1H, bs), 7.33-7.41 (3H, m), 7.46-7.51 (1H, m)

¹³C NMR (126 MHz, CDCl₃) δ –2.9, 125.7 (q, J_{CF} = 274 Hz), 128.0, 129.7, 134.0, 134.2 (q, J_{CF} = 17.1Hz), 135.6, 140.9 (q, J_{CF} = 30.4 Hz), 13.9, 22.2, 22.8, 28.5 (dd, J_{CF} = 2, 2

Hz), 31.6, 69.5 (dd, $J_{CF} = 6$, 1 Hz), 93.3 (dd, $J_{CF} = 16$, 11 Hz), 125.5, 127.5, 128.3, 141.4 (dd, $J_{CF} = 3$, 2 Hz), 154.5 (dd, $J_{CF} = 288$, 288 Hz) ¹⁹F NMR (471 MHz, CDCl₃ / C₆D₆) δ 101.9 (3F, s) IR (neat) 2967, 1614, 1413, 1255, 1120, 975, 836, 811 Anal. Calcd for CHFSi: C,57.37; H, 5.69. Found: C, 57.43; H, 5.53.

第2節 S_N2′反応による gem-ジフルオロビニルシランの合成

(1-エチル-2,2-ジフルオロビニル)-トリフェニルシラン(73a)、(1-ペンチル-2,2-ジフルオ ロビニル)-トリフェニルシラン(73b)、(1-ベンジル-2,2-ジフルオロビニル)-トリフェニルシ ラン(73c)、2-ベンジル-5,5-ジフルオロ-4-トリフェニルシリル-4-ペンテノン酸メチル(73d)、 (2,2-ジフルオロ-1-ペンチル-ビニル)ジメチルフェニルシラン(77a)、(1-ベンジル-2,2-ジフル オロ-ビニル)ジメチルフェニルシラン(77b)、N,N-ジメチル-2-ベンジル-4-(ジメチルフェニ ルシリル)-5,5-ジフルオロ-4-ペンテノン酸アミド(77c)、2-[2-(ジメチルフェニルシリ ル)-3,3-ジフルオロアリル]-マロン酸ジエチル(77d)、(1-[1,3]ジチアン-2-イルメチル-2,2-ジ フルオロビニル)-ジメチルフェニルシラン(77e)、[2-(ジメチルフェニルシリル)-3,3-ジフル オロ-アリル]-ジイソプピルアミン(77f)、1-[2-(ジメチルフェニルシリル)-3,3-ジフルオロ-ア リル]ピロリジン(77g)は次の方法で合成した。

ジメチルフェニル(1・トリフルオロメチル)ビニルシラン(27d)94.0 mg (0.408 mmol)のテ トラヒドロフラン溶液(4 ml)にテトラメチルエチレンジアミン 0.062 ml (0.41 mmol)を加 え、-78 ℃に冷却した後フェニルリチウムのジエチルエーテルーシクロへキサン溶液 0.423 ml (1.06 mol / l, 0.449 mmol)を 15 分かけて加える。TLC で反応を追跡しながら昇 温し、0 ℃においてリン酸緩衝液(pH 7)を加えて反応を停止し、ジエチルエーテルで抽出 する。飽和食塩水で洗浄後、有機相を無水硫酸マグネシウムで乾燥し、溶媒を減圧留去し て得られる残渣を PTLC により精製し、(1・ベンジル・2,2・ジフルオロ・ビニル)ジメチルフェ ニルシラン(77b, 100.1 mg, 0.347 mmol, 85.1%)を得る。 ただし 2-ベンジル-5,5-ジフルオロ-4-トリフェニルシリル-4-ペンテノン酸メチル(73d)、 N,N-ジメチル-2-ベンジル-4-(ジメチルフェニルシリル)-5,5-ジフルオロ-4-ペンテノン酸ア ミド(77c)、 (1-[1,3]ジチアン-2-イルメチル-2,2-ジフルオロビニル)-ジメチルフェニルシラ ン(77e)、[2-(ジメチルフェニルシリル)-3,3-ジフルオロ-アリル]-ジイソプピルアミン(77f)、 1-[2-(ジメチルフェニルシリル)-3,3-ジフルオロ-アリル]ピロリジン(77g)はそれぞれ求核剤 のテトラヒドロフラン溶液(3 ml)にトリフェニル(1-トリフルオロメチル)ビニルシラン (27c)あるいはジメチルフェニル(1-トリフルオロメチル)ビニルシラン(27d)のテトラヒド ロフラン溶液(1 ml)を滴下した。また 2-[2-(ジメチルフェニルシリル)-3,3-ジフルオロアリ ル]-マロン酸ジエチル(77d)は N,N-ジメチルホルムアミド中で反応を行った。

以下各 gem-ジフルオロビニルシランの物性値を示す。

白色結晶

¹H NMR (500 MHz, CDCl₃) δ 0.81 (3H, t, *J* = 7.4 Hz), 2.04 (2H, q, *J*= 7.4 Hz), 7.34– 7.40 (6H, m), 7.40–7.45 (3H, m), 7.55–7.58 (6H, m)

¹³C NMR (126 MHz, CDCl₃) δ 14.5, 19.7 (dd, J_{CF} = 4.7, 4.7 Hz), 80.7 (dd J_{CF} = 45.6, 45.6 Hz) 127.9, 129.7, 133.2, 135.9, 157,3 (dd, J_{CF} =308.2, 287.1 Hz)

¹⁹F NMR (254 MHz, CDCl₃ / C₆D₆) δ 92.3 (d, J_{FF} = 26 Hz), 96.0 (d, J_{FF} = 26 Hz)

(1-ペンチル-2,2-ジフルオロビニル)・トリフェニルシラン(73b)

白色結晶

¹H NMR (500 MHz, CDCl₃) δ 0.72 (3H, t, *J* = 6.9 Hz), 1.00-1.10 (4H, m), 1.10-1.16 (2H, m), 1.97 (3H, t, *J* = 7.9 Hz), 7.34-7.40 (6H, m), 7.40-7.45 (3H, m), 7.55-7.58 (6H, m))

¹³C NMR (126 MHz, CDCl₃) δ 13.9, 22.0, 26.2(dd, J_{CF} = 4.1, 4.1 Hz), 29.4, 31.4, 79.3 (dd

 $J_{\rm CF}$ = 46.2, 46.2 Hz), 16.9, 129.7, 133.2, 135.9, 157,3 (dd, $J_{\rm CF}$ =307.9, 286.7 Hz) ¹⁹F NMR (254 MHz, CDCl₃ / C₆D₆) δ 90.1 (d, $J_{\rm FF}$ = 26 Hz), 92.5 (d, $J_{\rm FF}$ = 26 Hz)

(1-ベンジル-2,2-ジフルオロビニル)-トリフェニルシラン(73c)

白色結晶

¹H NMR (270 MHz, CDCl₃) δ 3.38 (2H, s), 6.78 (2H, bs), 7.08 (3H, dd, *J*= 3.0 Hz),7.28 -7.46 (5H, m)

¹⁹F NMR (254 MHz, CDCl₃ / C₆D₆) δ 91.8(d, $J_{FF} = 22$ Hz), 92.8(d, $J_{FF} = 22$ Hz)

2-ベンジル-5,5-ジフルオロ-4-トリフェニルシリル-4-ペンテノン酸メチル(73d) 無色油状物

¹H NMR (500 MHz, CDCl₃) δ 2.11 (2H, bd, J = 13.9 Hz), 2.27 (1H, dddd, J = 4.9 Hz, 4.9Hz, 4.9 Hz, 4.9Hz),2.33(1H, dd, J = 13.4 Hz, 5.2 Hz), 2.58(1H, dd, J = 13.7 Hz, 9.7 Hz), 2.68 (1H, dd, J = 13.2 Hz, 10.0 Hz), 3.49 (3H, s), 6.77 (2H, bd, J = 6.9 Hz), 7.10–7.17 (3H, m), 7.37–7.40 (6H, m), 7.43–7.46 (3H, m), 7.57–7.60 (6H, m) ¹³C NMR (126 MHz, CDCl₃) δ 29.6, 38.5,47.6, 51.3, 77.7 (dd, $J_{CF} = 46.2, 46.2$ Hz), 126.2, 128.0, 128.2, 128.7, 129.9, 132.7, 136.0, 138.7, 157.9 (dd, $J_{CF} = 310.0, 287.3$ Hz), 174.8 ¹⁹F NMR (254 MHz, CDCl₃ / C₆D₆) δ 91.8(d, $J_{FF} = 22$ Hz), 92.8(d, $J_{FF} = 22$ Hz) Anal. Calcd for CHFOSi: C, 74.67; H, 5.89. Found: C, 74.38; H, 5.89.

(2,2-ジフルオロ-1-ペンチル-ビニル)ジメチルフェニルシラン(77a)

無色油状物

¹H NMR (500 MHz, CDCl₃) δ 0.42 (6H, s), 0.80 (3H, t, *J*=6.9 Hz), 1.12–1.27 (6H, m), 1.93 (2H, t, *J*= 7.6 Hz), 7.32–7.39 (3H, m), 7.48–7.54 (2H, m) ¹³C NMR (126 MHz, CDCl₃) δ –2.4, 13.9, 22.3, 25.7 (dd, *J*_{CF} = 5, 5 Hz), 29.5, 31.5, 81.1 (dd, *J*_{CF}= 51, 51 Hz), 127.8, 129.2, 133.7, 137.5, 156.6 (dd, *J*_{CF}= 306, 306 Hz) ¹⁹F NMR (471 MHz, CDCl₃ / C₆D₆) δ 85.6 (1F, d, *J*_{FF} = 38 Hz), 88.6 (1F, d, *J*_{FF} = 36 Hz), IR (neat) 3070, 2958, 2931, 1689, 1428, 1251, 1110, 813, 779, 701 cm⁻¹ Anal. Calcd for CHFSi: C, 67.12; H, 8.26. Found: C, 67.37; H, 8.22

(1-ベンジル-2,2-ジフルオロ-ビニル)ジメチルフェニルシラン(77b)

無色油状物

¹H NMR (500 MHz, CDCl₃) δ 0.30 (6H, s), 3.32 (2H, s), 7.00–7.03(2H, m), 7.13–7.17 (1H, m), 7.18–7.22 (2H, m), 7.27–7.33 (2H, m), 7.33–7.40 (3H, m) ¹³C NMR (126 MHz, CDCl₃) δ –2.5, 31.5 (dd, J_{CF} = 6.5 Hz, 4.8 Hz), 80.7 (27.9 Hz, 3.8 Hz), 126.1, 126.7, 128.4, 129.3, 133.8, 136.8, 157.3 (307.1 Hz, 283.9 Hz) ¹⁹F NMR (471 MHz, CDCl₃ / C₆D₆) δ 85.7 (1F, d, J_{FF} = 33 Hz), 88.9 (1F, d, J_{FF} = 33 Hz), IR (neat) 3027, 2958, 1689, 1600, 1427, 1112, 1027, 779, 734, 700cm⁻¹ Anal. Calcd for CHFSi: C, 70.80; H, 6.29. Found: C, 70.79; H, 6.48

N,N-ジメチル-2-ベンジル-4-(ジメチルフェニルシリル)-5,5-ジフルオロ-ペンタ -4-エノン酸アミド(77c)

無色油状物

¹H NMR (500 MHz, CDCl₃) δ 0.43 (6H, s), 2.21 (3H, s), 2.28 (1H, dd, *J*= 14.7 Hz, 5.7 Hz), 2.35 (1H, dd, *J*= 14.7 Hz, 8.7 Hz), 2.55–2.63 (1H, m), 2.68 (3H, s), 2.71–2.79 (1H, m), 6.93–6.96 (2H, m), 7.11–7.15 (1H, m) 7.15–7.21 (2H, m), 7.32–7.41 (3H, m), 7.51 –7.56 (2H, m) 7.13–7.17 (1H, m), 7.18–7.22 (2H, m), 7.27–7.33 (2H, m), 7.33–7.40 (3H, m)

¹³C NMR (126 MHz, CDCl₃) δ -2.6, -2.3, 28.8 (dd, J_{CF} = 6, 3 Hz), 35.3, 36.5, 43.2, 126.2, 128.0, 128.1, 128.8, 129.4, 133.7, 137.3, 139.5, 157.1 (309.4, 284.6 Hz), 174.1 ¹⁹F NMR (471 MHz, CDCl₃ / C₆D₆) δ 88.2 (1F, d, J_{FF} = 31 Hz), 92.4 (1F, d, J_{FF} = 31 Hz) Anal. Calcd for CHFNOSi: C, 68.18; H, 7.02; N, 3.61. Found: C, 68.30; H, 7.05; N, 3.45 2-[2-(ジメチルフェニルシリル)-3,3-ジフルオロアリル]-マロン酸ジエチル(77d) 無色油状物

¹H NMR (500 MHz, CDCl₃) δ 0.46 (3H, s), 0.46 (3H, s), 1.21 (6H, t, *J*= 7.2 Hz), 2.59 (2H, d, *J*=7.9 Hz), 3.21 (1H, t, 7.9 Hz), 4.11 (q, 7.2 Hz), 7.26-7.39 (3H, m), 7.51-7.54 (2H, m)

¹³C NMR (126 MHz, CDCl₃) δ -2.6, -2.3, 28.8 (dd, J_{CF} = 6, 3 Hz), 35.3, 36.5, 43.2, 126.2, 128.0, 128.1, 128.8, 129.4, 133.7, 137.3, 139.5, 157.1 (309.4, 284.6 Hz), 174.1 ¹⁹F NMR (471 MHz, CDCl₃ / C₆D₆) δ 88.2 (1F, d, J_{FF} = 31 Hz), 92.4 (1F, d, J_{FF} = 31 Hz) Anal. Calcd for CHFNOSi: C, 68.18; H, 7.02; N, 3.61. Found: C, 68.30; H, 7.05; N, 3.45

(1-[1,3]ジチアン-2-イルメチル-2,2-ジフルオロビニル)-ジメチルフェニルシラン(77e) 無色油状物

¹H NMR (500 MHz, CDCl₃) 0.47 (3H, s), 0.47 (3H, s), 1.75–1.85 (1H, m), 1.98–2.05 (1H, m), 2.43 (2H, d, *J*=7.7 Hz), 2.59–2.67 (1H, m), 2.73–2.78 (2H, m), 3.64 (1H, t, *J*=7.7 Hz), 7.25–7.40 (3H, m), 7.55–7.58 (2H, m)

¹³C NMR (126 MHz, CDCl₃) -2.4, 25.7, 29.9, 31.6 (dd, J_{CF} = 7, 0.3 Hz), 46.8 (dd, J_{CF} = 3 Hz), 78.2 (dd, J_{CF} = 25, 4 Hz), 127.9, 129.4, 133.8, 136.9, 157.2 (dd, J_{CF} = 308.9, 285.5 Hz) ¹⁹F NMR (471 MHz, CDCl₃ / C₆D₆) 88.2 (d, J_{FF} = 29 Hz), 93.6 (d, J_{FF} = 29 Hz) Anal. Calcd for CHFSSi: C, 54.51; H, 6.10; S, 19.40. Found: C, 54.55; H, 5.99; S, 19.68

[2-(ジメチルフェニルシリル)-3,3-ジフルオロ-アリル]-ジイソプピルアミン (77f) 淡黄色油状物

¹H NMR (500 MHz, CDCl₃) 0.45 (6H, s), 0.86 (12H, d, *J*= 6.7Hz), 2.93 (2H, 7, *J*= 6.7 Hz), 3.11 (2H, s), 7.32-7.34 (3H, m), 7.52-7.54 (2H, m) ¹³C NMR (126 MHz, CDCl₃) -2.0, 20.1, 40.7 (dd, J_{FF} = 8.7, 4.4 Hz), 80.6 (dd, J_{FF} = 21.6, 5.2 Hz), 127.6, 129.0, 133.9, 138.0, 157.5 (dd, J_{FF} = 306, 286 Hz) ¹⁹F NMR (471 MHz, CDCl₃ / C₆D₆) 89.0 (d, J_{FF} = 33 Hz), 89.1 (d, J_{FF} = 33 Hz) Anal. Calcd for CHFSSi: C, 65.55; H, 8.74; N, 4.50. Found: C, 65.27; H, 8.62; N, 4.35

1-[2-(ジメチルフェニルシリル)-3,3-ジフルオロ-アリル]ピロリジン (77g)

淡黄色油状物

¹H NMR (500 MHz, CDCl₃) 0.45 (6H, s), 1.66 (4H, bs,), 2.31 (4H,bs), 2.99 (2H, s), 7.33– 7.35 (3H, m), 7.57–7.59 (2H, m) ¹³C NMR (126 MHz, CDCl₃) -2.0, 20.1, 40.7 (dd, $J_{\rm FF}$ = 8.7, 4.4 Hz), 80.6 (dd, $J_{\rm FF}$ = 21.6,

5.2 Hz, 127.6, 129.0, 133.9, 138.0, 157.5 (dd, J_{FF} = 306, 286 Hz)

¹⁹F NMR (471 MHz, CDCl₃ / C₆D₆) 86.4 (d, J_{FF} = 31 Hz), 88.7 (d, J_{FF} = 31 Hz)

Anal. Calcd for CHFSSi: C, 64.02; H, 7.52; N, 4.98. Found: C, 64.00; H, 7.45; N, 4.74

第3節 gem-ジフルオロビニルシランの置換反応による gem-ジフルオロアルケンの合成

トリス(ジエチルアミノ)スルホニウムトリメチルジフルオロシリカート(TASF(Et))は、文 献の方法によって調製した²⁵。

<u>テトラブチルアンモニウムフルオリド(TBAF)を用いる 1,1-ジフルオロ-ヘプテン(34)の</u> 合成

(2,2-ジフルオロ-1-ペンチル-ビニル)ジメチルフェニルシラン(77a)(80.8 mg, 0.301 mmol)
の DMI 溶液(3 ml)を 0 ℃に冷やし、TBAF の THF 溶液(1.0 mol / l, 0.331 ml, 0.331 mmol)
を 7 分かけて滴下する。0 ℃で 5 分攪拌した後室温まで昇温し、10 分後に反応液の ¹⁹F

NMR を測定し、70%の NMR 収率で 1,1-ジフルオローへプテン(**34**)を確認した。 **34**: ¹⁹F NMR (471 MHz, CDCl₃ / C₆D₆) δ 69.6 (dd, *J*_{FF}= 52 Hz, *J*FH= 26 Hz), 72.2 (d, *J*_{FF}= 52 Hz)

トリフルオロメタンスルホン酸を用いる 1,1-ジフルオローへプテン(34)の合成

(2,2・ジフルオロ・1・ペンチル・ビニル)ジメチルフェニルシラン(77a)(82.2 mg, 0.306 mmol)
のジクロロメタン溶液(3 ml)を-78 ℃に冷やし、トリフルオロメタンスルホン酸(0.030 ml,
0.337 mmol)を滴下する。40 分後 0 ℃に昇温し、TLC で 77a の消失を確認した後室温まで昇温し、反応液の ¹⁹F NMR を測定することで 59%の NMR 収率で 1,1・ジフルオロ・ヘプテン(34)を確認した。

(2,2-ジフルオロ-1-ペンチル-ビニル)ジメチルフェニルシラン(77a)と臭素の反応による[1-ブロモ-1-(ブロモ-ジフルオロメチル)-ヘキシル]-ジメチルフェニルシラン(36)の合成

[1-ブロモ-1-(ブロモ-ジフルオロメチル)-ヘキシル]-ジメチルフェニルシラン(36)は、以下の 方法によって調製した。

(2,2-ジフルオロ-1-ペンチル-ビニル)ジメチルフェニルシラン(77a)(79.7 mg, 0.297 mmol)のトルエン溶液(3 ml)を-78 ℃に冷やし、臭素(292.1 mg, 1.83 mmol)のトルエン 溶液(1 ml)を3分かけて加える。4 時間後、臭素238.1 mg, 1.49 mmol)のトルエン溶液(1 ml) を追加し、さらに 30 分後-45 ℃に昇温し、2 時間後、飽和チオ硫酸ナトリウム水溶液を 加え反応停止し、すぐ室温に昇温する。酢酸エチルで抽出し、飽和食塩水で洗浄後溶媒を 減圧留去して得られる残渣を PTLC で精製すると、[1-ブロモ-1-(ブロモ-ジフルオロメチ ル)-ヘキシル]-ジメチルフェニルシラン(36) (107.4 mg, 0.251 mmol, 84%)が得られる。

[1-ブロモ-1-(ブロモ-ジフルオロメチル)-ヘキシル]-ジメチルフェニルシラン(36)

白色結晶

¹H NMR (500 MHz, CDCl₃) δ 0.63 (6H,s), 0.85 (3H, t, *J*= 7.3 Hz), 1.15–1.30 (4H, m), 1.40–1.55 (1H, m), 1.90–2.00 (1H, m), 2.03–2.10 (1H,m), 7.35–7.40 (2H, m), 7.40– 7.44 (1H, m), 7.62–7.65 (2H, m)

¹³C NMR (126 MHz, CDCl₃) δ -1.8, -1.6, 13.9, 22.2, 25.8, 32.1, 38.8, 63.7 (dd, J_{CF} = 28 Hz, 19 Hz), 126.4 (dd, J_{CF} = 312, 305 Hz), 127.7, 130.0, 134.7, 135.1

¹⁹F NMR (471 MHz, CDCl₃ / C₆D₆) δ 129.9 (1F, d, J_{FF} = 158 Hz), 125.5 (1F, d, J_{FF} = 158 Hz)

Anal. Calcd for CHBrF: C, 42.07; H, 5.18; Br, 37.32 Found: C, 42.13; H, 5.13; Br, 37.22.

(2,2-ジフルオロ-1-ペンチル-ビニル)ジメチルフェニルシラン(77a)とアルデヒドとの反応によるホモアリルアルコール 104 の合成

3,3-ジフルオロ-2-ペンチル-1-フェニル-プロ-2-エン-1-オール(104a)、1,1-ジフルオロ-2-ペンチル-5-フェニル-ペンタ-1-エン-3-オール(104b)、1,1-ジフルオロ-4,4-ジメチル-2-ペン チル-ペンタ-1-エン-3-オール (104d)は以下の方法で合成した。

(2,2-ジフルオロ-1-ペンチル-ビニル)ジメチルフェニルシラン(**77a**)(108.1 mg, 0.403 mmol)の THF 溶液(2 ml)に、室温でベンズアルデヒド(45.0 mg, 0.424 mmol)の THF 溶液 (2.0 ml)、TASF(Et)の THF 溶液(1.0 mol/1, 0.44 ml, 0.44 mmol)を順次加え、室温で 5 時 間攪拌する。飽和塩とアンモニウム水溶液を加え反応を停止した後、酢酸エチルで抽出し、 硫酸マグネシウムで乾燥する。溶媒を減圧留去した後残渣を PTLC で精製することにより、 3,3-ジフルオロ-2-ペンチル-1-フェニル-プロ-2-エン-1-オール(**104a**)(67.0 mg, 0.278 mmol, 70%)を得る。

以下にホモアリルアルコール104の物性を示す。

3,3-ジフルオロ-2-ペンチル-1-フェニル-プロ-2-エン-1-オール(104a) 淡黄色油状物

¹H NMR (500 MHz, CDCl₃) δ 0.80 (3H,t, J = 7.1 Hz), 1.08–1.23 (5H, m), 1.25–1.34 (1H, m), 1.79–1.86 (1H, m), 1.87 (1H, d, J = 3.7 Hz), 1.89–1.97 (1H, m), 5.69 (1H, ddd, J = 3.7 Hz, $J_{\rm HF} = 1.6$, 1.6 Hz), , 7.35–7.39 (4H, m)

¹³C NMR (126 MHz, CDCl₃) δ 13.9, 22.2, 22.8, 28.5 (dd, $J_{CF} = 2, 2$ Hz), 31.6, 69.5 (dd, $J_{CF} = 6, 1$ Hz), 93.3 (dd, $J_{CF} = 16, 11$ Hz), 125.5, 127.5, 128.3, 141.4 (dd, $J_{CF} = 2, 2$ Hz), 154.5 (dd, $J_{CF} = 288, 288$ Hz)

¹⁹F NMR (471 MHz, CDCl₃ / C₆D₆) δ 69.2 (1F, d, J_{FF} = 49 Hz), 69.6 (1F, d, J_{FF} = 49 Hz)

IR (neat) 3388, 2956, 2931, 1739, 1452, 1261, 1211, 1130, 1009, 700

Anal. Calcd for CHFO: C, 69.98; H, 7.55. Found: C, 70.08; H, 7.51.

- M. Obayashi, E. Ito, K. Matsui, K. Kondo, *Tetrahedron Lett.*, 23, 2323 (1982), S.
 R. Piettre, *Tetrahedron Lett.*, 37, 5881 (1996), M. L. Edwards, D. M. Stemerick,
 E. T. Jarvi, D. P. Matthews, J. R. McCarthy, *Tetrahedron Lett.*, 31, 5571 (1990)W. A. Vinson, K. S. Prickett, B. Spahic, P R. Ortiz de Montellano, *J. Org. Chem.*, 48, 4661 (1983), R. Filler, S. Lin, Z. Zhang, *J. Fluorine, Chem.*, 74, 69 (1995), R. Waschbusch, M. Samadi, P. Savignac, J. Organomet. Chem. 529, 267 (1997)
- W. B. Motherwell, J. S. Houlto, B. C. Ross, M. J. D. J. Tozer, M. Z. Williams, Slawin, *Tetrahedron* 49, 8087 (1993) W. B. Motherwell, M. J. Tozer, B. C. Ross, *Chem. Commun.* 1989, 1437
- (3) (3a) M = Li, EWG = OTs: K. Tanaka, T. Nakai, N. Ishikawa, *Tetrahedron Lett.* **1978**, 4809, (3b) M = Li, EWG = OPh, SPh: T. Nakai, K. Tanaka, N. Ishikawa, *Chem. Lett.*, **1976**, 1263, (3c) M = Li, EWG = O-allyl: B. W. Metcalf, E. T. Jarvi J. P. Burkhart, *Tetrahedron Lett.* **26**, 2861 (1985), (3d) M = Li, EWG = OMEM: S. T. Patel, J. M. Percy, R. D. Wilkers, *J. Org. Chem.*, **61**, 166 (1996), (3e) M = Li, EWG = OCONEt₂: P. J. Crowley, J. A. Howarth, W. M. Owton, J. M. Percy, K. Stansfield, *Tetrahedron lett.* **37**, 5975 (1993), J. Lee, M. Tsukazaki, V. Snieckus, *Tetrahedron Lett.* **34**, 415 (1993), (3f) M = Li, EWG = Cl or F: D. J. Burton, P. L. Coe, I. B. Haslock, R. L. *Chem. Commun.*, **1996**, 49 (3g) M = Zn, EWG = CF₃, P. A. Morken, D. J. Burton, *J. Org. Chem.*, **58**, 1167 (1993), M = Cu, EWG = aryl: T. Ishihara, Mm Yamana, T. Ando, *Tetrahedron Lett.* **24**, 5657 (1983)
- (4) B. V. Nguyen, D. J. Burton, J. Org. Chem., 62, 7758 (1997)
- J. Ichikawa, C. Ikeura, T. Minami, J. Fluroine Chem., 63, 281 (1993), J.
 Ichikawa, S. Hamada, T. sonoda, H. Kobayashi, Tetrahedron Lett., 33, 337
 (1992), J. Ichikawa, T. Sonoda, H. Kobayashi, Tetrahedron Lett., 30, 6379 (1989)
- (6) J. Ichikawa, M. Fujiwara, T. Okauchi, T. Minami, *Tetrahedron Lett.*, 37, 8799 (1996)
- (7) (7a)R = Ph, Alkyl: J. P. Begue, D. B. Delpon, M. H. Rock *Tetrahedron Lett.*, **36**,

5003 (1995), (7b) R = CO₂Na: T. Fuchikami, Y. SHIbata, Y. Suzuki, *Tetrahedron Lett.*, 27, 3173 (1986), (7c) R = F, H: M. Park, T. Uegami, T. Konno, T. Ishihara, H. Yamanaka, *Tetrahedron Lett.* 40, 2985 (1999), (7d) R = H: D. A. Kendrick, M. Kolb, J. Fluorine Chem. 45, 265 (1989)

- (8) F. G. Drakesmith, O. J. Stewart, P. Tarrant, J. Org. Chem., 33, 280 (1968)
- R. N. Haszeldine, C. R. Pool, A. E. Tipping, J. Chem. Soc. Perkin. Trans. 1, 1974, 2293
- (10) N. Kishi, H. Imma, K. Mikami, T. Nakai, *Synlett*, **1992**, 189.
- (11) Protonation H. Oda, M. Sato, Y. Morizawa, K. Oshima, H. Nozaki, Tetrahedron Lett., 24, 2877 (1983), T. H. Chan, W. Mychajlowskij, Tetrahedron Lett., 39, 3479 (1974)
- Bromination Friedel-Crafts acylation T. H. Chan, P. W. K. Lau, W. Mychajlowskij, *Tetrahedron Lett.*, 38, 3317 (1977)
- (13) Pd(0) catalyzed Cross Coupling Y. Hatanaka, T. Hiyama, J. Org. Chem., 54, 270 (1989) S. E. Denmark, R. F. Sweis, J. Am. Chem. Soc., 123, 6439 (2001)
- (14) Tamao oxidation Review: G. R. Jones, Y. Landais, Tetrahedron 52, 7599
 (1996); K. Tamao, T. Yamauchi, Y. Ito, Chem. Lett., 1987, 171; I. Fleming, P. E. J. Sanderson, Tetrahedron Lett., 28, 4229 (1987)
- (15) B. F. Bonini, M. Comes-Franchini, M. Fochi, G. Mazzanti, C. Nanni, A. Ricci, *Tetrahedron Lett.*, **39**, 6737 (1998) (16) F. Jin,; B. Jiang, Y. Xu, *Tetrahedron Lett.*, **33**, 1221 (1992)
- (16) M. V. George, D. J. Peterson, H, Gilman, J. Am. Chem. Soc., 82, 403 (1960)
- (17) S. Sharma, A. C. Oehlschlager, J. Org. Chem., 54, 5483 (1983)
- (18) J. M. Tour, P. V. Bedworth, R. Wu, *Tetrahedron Lett.*, **30**, 3927 (1989)
- (19) K. Takai, Y. Hotta, K. Oshima, H. Nozaki, Bull. Chem. Soc. Jpn., 53, 1968 (1980)
- (20) B. Jiang, Y. Xu, J. Org. Chem. 56, 7336 (1991)
- (21) Q. F. Wang, C. G. Yang, M. Xu, *Tetrahedron Lett*, **42**, 4083 (2001)
- (22) 藤原昌生,博士論文,九州工業大学,2000
- (23) M. Suda, *Tetrahedron Lett.*, **21**, 2555 (1980)

謝辞

本研究を進めるにあたり終始御指導御鞭撻を賜りました、本学教授奈良坂紘一先生に心から感謝致します。

また本研究を進めるにあたり、直接御指導頂きました本学助教授市川淳士博士に 深く感謝致します。

実験を進める上で数々の有益なご助言を頂きました大阪大学講師櫻井英博博士、本学助手 北村充博士、本学助手山根基博士ならびに奈良坂研究室のみなさまに感謝致します。

修論提出三日前に私のコンピューターが起動しなくなった際、購入直後の NEC Lavie LL 700/2 を快く貸与してくださった奈良坂研究室 4 年、神保尚久君に特別に感謝の意を表します。

最後に、私を育ててくれた父保および母朋子、いつも私を励ましてくれる弟の達朗に感謝 します。

2002年2月6日

gem-ジフルオロビニルシランを鍵中間体とする gem-ジフルオロアルケンの合成

石橋 雄一郎 奈良坂研究室

gem-ジフルオロアルケンは、フッ素系ポリマーや含フッ素生理活性物質の原料となるため、 合成化学上意義深い化合物群である。しかしながら、多様な置換基を持つ gem-ジフルオロア ルケンに対応できる自由度の高い合成法は極めて少ない。これに対して当研究室では、既にジ フルオロビニルボランおよびジルコニウムを鍵中間体とする gem-ジフルオロアルケン類の一 般的合成法を確立している。筆者は修士課程において、他の安定な gem-ジフルオロビニル金 属種としてケイ素化合物に着目し、gem-ジフルオロアルケン合成への利用を検討した。

3,3,3・トリフルオロ・1・プロペン誘導体に求核剤を作用させると、 $S_N 2'$ 反応が進行して gem-ジフルオロアルケンを与えることが知られるが、この反応は基質と求核剤に関して制約が多い。 そこで、シリル基の α -アニオン安定化効果を利用して 1・トリフルオロメチルビニルシラン 1 と種々の求核剤との $S_N 2'$ 反応を促進し (Step 1)、さらに得られる gem-ジフルオロビニルシ ラン 3 のシリル基を求電子的な置換に活用することで (Step 2)、広範な gem-ジフルオロア ルケン 4 に適用できる合成法の開発を目指した。

1. トリフルオロメチルビニルシランの調製

上式の反応を円滑に進行させるには、ケイ素上の置換基の選択が重要となる。1 からのシリ ルフルオリドの脱離を抑えるために、ケイ素上は嵩高い方が良い。また、ケイ素上にフェニル基 などの電子求引基があれば、中間体2の安定化により反応性の向上が期待できる。その一方で、 置換基が大きすぎると求核剤(1→2)や求電子剤(3→4)との反応を阻害する。これらの点を考慮し てビニルシラン 1a-d を選び、シリルケトンのメチレン化(A法)および(1-トリフルオロメチ ルビニル)アニオンのシリル化(B法)の2種類の手法によって調製した。

Method A

 CH_2I_2 (1.5 eq) CF_3 (Ph₃Si)₂CuLi (1.0 eq) CF_3 $Ti(O'Pr)_4$ (1.1 eq), Zn (4.5 eq) $(CF_3CO)_2O$ $-30 \ ^{\circ}\text{C} \rightarrow \text{rt}$ 30 min / THF rt → reflux, 3 h / THF SiPh₃ SiPh₃ (3.0 eq) 5 1a 55% 51% Method B Mg (1.2 eq) SiR₃ = SiMe₂Ph : 1b 70% CF₃ CF₃ R₃SiCl (2.0 ~ 3.0 eq) SiPh₂Me : 1c 39% $0 \,^{\circ}\text{C} \rightarrow \text{rt}, 1 \,\text{h} / \text{THF}$ SiR₃ Br SiMePhOH : 1d 39%* * MePhSiCl₂ was used. 6

1・トリフルオロメチルビニルシランの S_N2′反応: gem-ジフルオロビニルシランの合成

トリフェニルビニルシラン **1a** に対し、求核剤としてブチルリチウムを作用させたところ、 対応する S_N2′生成物が得られた。ジメチルフェニルビニルシラン **1b** はより高い反応性を示し、 炭素求核剤であるアミドやマロン酸エステルのエノラート、嵩高い窒素求核剤であるリチウム ジイソプロピルアミドなど、求核性の低い反応剤でも目的とする S_N2′反応が円滑に進行した。 このようにシリル基の効果によって、多様な置換基を持つジフルオロビニル化合物がはじめて 合成可能となった。

	1	NuM (eq)	Temp.	Time (h)	Yield (%)
$F_{3}C \xrightarrow{NuM} F_{2}C \xrightarrow{Nu} F_{2}C \xrightarrow{Nu} SiR_{3}$ $SiR_{3} = SiPh_{3} 1a$ $SiMe_{2}Ph 1b$	1a	BuLi (2.0)	−78 °C	0.1	84
	1b	BuLi (1.05)	–78 ℃	0.3	93
	1b	OLi Ph NMe ₂ (1.5)	–78 °C → 0 °C	1.0	85
	1b	NaCH(CO ₂ Et) ₂ (2.0)	$0 {}^{\circ}\text{C} \rightarrow \text{reflux}$	24	55*
	1b	ⁱ Pr ₂ NLi (1.5)	$-78 \text{ °C} \rightarrow 0 \text{ °C}$	1.5	75
					*DMF solv.

3. シリル基の求電子置換反応:一置換および二置換gem-ジフルオロアルケンの合成

S_N2′反応によって得られた gem ジフルオロビニルシランは、フッ化物イオンを作用させるこ とにより gem ジフルオロビニルアニオン等価体として利用できる。7 に ⁿBu₄NF (TBAF) を作 用させると、微量に含まれる水が求電子剤として反応し、シリル基が水素で置換された gem ジフルオロアルケン 8 を好収率で与えた。これに対し、フッ化物イオン源として(Et₂N)₃S SiMe₃F₂(TASF)を用いた場合には、アルデヒドとの反応によって炭素-炭素結合の生成が可能 となり、対応するアルコール 9 が効率良く得られた。一方、7 に臭素を作用させると、シリル 基のβ-カチオン安定化効果によって、通常困難とされるジフルオロアルケン部への求電子付加 反応が進行し、ジブロモ体 10 が生成した。さらにこの 10 を TBAF で処理することにより、 臭素置換基を有するジフルオロアルケン 11 へも誘導できた。

